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ISAMA 2011 is dedicated to the memory of  
Charles O. Perry (1929-2011) 

 
Charles O. Perry passed away on Tuesday, February 8, 2011 at his home in Norwalk, 
Connecticut after a long illness. We are dedicating this conference to his memory. Charles Perry 
was one of the leading international sculptors whose work was inspired by mathematics. He 
continued in the tradition of Max Bill, Naum Gabo, and Antoine Pevsner. I first met Charlie 
when he was an invited speaker at the first Art and Mathematics Conference held at the 
University at Albany in June, 1992. As a leader in the field, he certainly energized that 
conference, as well as the many subsequent conferences at which he spoke. His work is an 
inspiration to all of us. It was also a great experience for all of us to learn from him. We will 
certainly miss his presence but his strong spirit will always be with us.  

As a person, he was totally down to earth, and I will certainly miss our frequent phone 
conversations. I can close my eyes and hear him telling me entertaining stories, as well as advice 
on all things concerning sculpture, as well as life in general. Charlie was “una cosa vera”, the 
real thing.  

                                                                                           Nat Friedman,  

                                                                                           May 11, 2011 
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Preface 

It is a pleasure to return to ISAMA founder Nat Friedman’s hometown Chicago for 
ISAMA 2011 and we wish to express our deep appreciation to Pangratios 
Papacosta for bringing the conference to Columbia College, our host institution. 
Columbia College is an ideal location for the conference with Millenium Park 
nearby. Here are the world famous attractions such as the Art Institute of Chicago 
and the new Renzo Piano Wing, the wonderful public sculpture Cloudgate by 
Anish Kapoor, and the Frank Gehry Pritzker Pavilion Concert Hall, all within easy 
walking distance. 
 
We have a full five day program with talks on Monday, Tuesday, and Wednesday, 
excursions on Thursday, and workshops on Friday. In particular, the invited 
speakers are Kevin Henry, Professor of Product Design, Columbia College, 
Chicago; Neil Katz, Architect, Skidmore, Owings, and Merrill, LTP, Chicago; 
Jason Leigh, Professor of Computer Science, University of Illinois at Chicago; 
Mark Schendel, Architect, Studio Gang Architects, Chicago; and David Stark, 
Director of Adult Programs, Art Institute of Chicago. 
 
In this volume there are a range of papers relating the arts, mathematics, and 
architecture. We wish to thank the authors for their participation in ISAMA 2011-
you are the conference. Our purpose is to come together to share information and 
discuss common interests. Hopefully new ideas and partnerships will emerge 
which can enrich interdisciplinary education. 
 

ISAMA 2011 Organizing Committee 
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Ovals and Ellipses in Architecture 

 
Javier Barrallo 

The University of the Basque Country 
E.T.S. Arquitectura. Plaza Oñati, 2 

20018 San Sebastián. Spain 
 
 

Abstract 
 

Since ancient times, ovals and ellipses have been used to design floor plans and enclosed spaces. From the 
amphitheatres of Rome to the European Baroque churches, a wide variety of oval shapes have been constructed 
throughout the history of Architecture. The close similarity between ellipses and ovals makes it almost impossible 
to distinguish between them without documentation from the construction  techniques. Several details have led us 
to think that ovals were preferred by architects and masons. Modern architecture has experienced a revival of 
elliptic forms, creating amazing new buildings based on torsion, juxtaposition and rotation of ovals, ellipses and 
superellipses.  

 
 

Definition of Ovals 
 
The word oval comes from the Latin ovum, egg. There is no strict mathematical definition for the term 
oval and many curves are commonly called ovals. All ovals are closed differentiable curves that enclose a 
convex region. They are smooth looking and have at least one axis of symmetry. 
 
Amongst them, the most well known are Cassini’s Ovals, named after the Italian born astronomer 
Giovanni Domenico Cassini (1625-1712) who studied them in 1680. They are defined as the set of points 
in the plane whose product of the distances to two fixed points is constant. Remember that the ellipse is 
defined as the set of points whose sum of the distances to two fixed points is constant, rather than the 
product. Cassini’s ovals have the following equation, where the foci are (a, 0), (-a, 0) and b is a constant. 
 

                          
 
With this definition of Cassini´s ovals, we can obtain an enormous variety of forms. These include the 
lemniscate of Bernoulli (when b/a=1) which is a figure with a rotated eight shape and self-intersecting, a 
reason why it is sometimes not considered as an oval.  
 

                      
 

Figure 1: A chicken egg is an oval with one axis of symmetry (left). Family of Cassini’s ovals (right). 
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There are many possible constructions of ovals, but we should highlight the constructions described by 
Sebastiano Serlio (1537-1575) in his books Primo and Quinto Libri d’Arquitecttura. Here, four simple 
and reliable techniques for the construction of ovals were introduced. Using the triangle, square and circle 
as basic geometric forms, Serlio described how to produce ovals made up from four circular arcs. This 
treatise has been used extensively by many architects across Europe. 
 
Serlio's constructions have been analyzed in terms of the ovals' approximation to an ellipse. We found 
that Serlio's constructions do reasonably well. But other constructions by James Simpson based on a 
method by James Stirling have superior fitness. Other methods, like Vignola’s construction, do 
especially well. 
 

 
 

Figure 2: Sebastiano Serlio’s oval constructions (1545) 
 
 

Ellipses and Conic Sections 
 

An ellipse is a closed plane curve consisting of all points for which the sum of the distances between a 
point on the curve and two fixed points (foci) is the same. It can also be defined as the conic section 
formed by a plane cutting a cone in a way that produces a closed curve. Circles are special cases of 
ellipses. 
 
The discovery of conic sections is credited to Menaechmus in Ancient Greece around the years 360-350 
B.C. These curves were later investigated by Euclid, Archimedes and Apollonius, the Great Geometer. 
Conic sections were nearly forgotten for 12 centuries until Johannes Kepler (1571-1630) discovered the 
elliptic nature of planetary motion as one of the major advances in the history of science. 
 

                
 

Figure 3: Ellipse obtained as the intersection of a cone and a plane (left) Table of conics, Cyclopaedia, 
1728 (center) Use of the string method to trace an ellipse, Bachot, 1598 (right). 



11

There are many possible constructions of ovals, but we should highlight the constructions described by 
Sebastiano Serlio (1537-1575) in his books Primo and Quinto Libri d’Arquitecttura. Here, four simple 
and reliable techniques for the construction of ovals were introduced. Using the triangle, square and circle 
as basic geometric forms, Serlio described how to produce ovals made up from four circular arcs. This 
treatise has been used extensively by many architects across Europe. 
 
Serlio's constructions have been analyzed in terms of the ovals' approximation to an ellipse. We found 
that Serlio's constructions do reasonably well. But other constructions by James Simpson based on a 
method by James Stirling have superior fitness. Other methods, like Vignola’s construction, do 
especially well. 
 

 
 

Figure 2: Sebastiano Serlio’s oval constructions (1545) 
 
 

Ellipses and Conic Sections 
 

An ellipse is a closed plane curve consisting of all points for which the sum of the distances between a 
point on the curve and two fixed points (foci) is the same. It can also be defined as the conic section 
formed by a plane cutting a cone in a way that produces a closed curve. Circles are special cases of 
ellipses. 
 
The discovery of conic sections is credited to Menaechmus in Ancient Greece around the years 360-350 
B.C. These curves were later investigated by Euclid, Archimedes and Apollonius, the Great Geometer. 
Conic sections were nearly forgotten for 12 centuries until Johannes Kepler (1571-1630) discovered the 
elliptic nature of planetary motion as one of the major advances in the history of science. 
 

                
 

Figure 3: Ellipse obtained as the intersection of a cone and a plane (left) Table of conics, Cyclopaedia, 
1728 (center) Use of the string method to trace an ellipse, Bachot, 1598 (right). 

It must be stated that before René Descartes (1596-1650) developed analytic geometry all geometrical 
objects were described from basic measurements taken with rule and compass. So, the ellipse equation we 
usually manipulate, (x/a)2+(y/b)2=1, was unknown before the XVII century. 
 
The only way to represent an ellipse in the ancient world was to follow pure mechanical processes like the 
gardener’s method using two pegs as the ellipse’s foci and a rope around them. Other more complex 
devices were the Trammel of Archimedes (also known as Ellipsograph) or the Hypotrochoid curve 
generator, considering the ellipse as a special case of a Hypotrocoid. 
 
In Astronomia Nova (1609) and the Codex Atlanticus (1519) Johannes Kepler and Leonardo da Vinci 
respectively described how an ellipse inscribed in a circumference divides lines drawn from its major axis 
to the circle proportionally. 
 

              
 
Figure 4: According to Kepler, Point B divides line AA' in the same proportion as point D divides line 
CC', and so on (left). Drawing by Leonardo da Vinci from the Codex Atlanticus (right). 
 
 

The origin of Ovals in Architecture 
 
The first buildings from antique civilizations like Egypt or Mesopotamia were rounded forms not 
geometrically defined which could be described as ovals. Ancient builders were looking for a simple and 
economical way to enclosure a space. As these techniques were improved and spaces became wider, 
contours became geometrically traced, probably by means of cords and pegs. 
 

   
 

Figure 5: Method of constructing oval arches using the Egyptian triangle 3-4-5 in the Ramesseum, 
Thebes (XIII Century B.C.) 

 
During the following centuries, the improvement of materials and edification techniques solved the 
constructive problems with lintels and corners and led to the introduction of rectangular shapes. Thus, 
during the Hellenic times ovals were not present, although the Greek discoveries in conic sections are 
present in their mouldings. 
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Roman architecture introduced the elliptic amphitheatre. This shape was introduced in response to several 
factors; a square or rectangular amphitheatre would result in animals and combatants stuck in corners. 
Circles and ellipses make better use of space and improve the view of the action. Finally, ellipses are 
better than circles since they have a dominant direction to structure the fights, whereas circles would lead 
to an impression of confusion. 
 
As it is almost impossible to distinguish an ellipse from an oval when the major and minor axes are not 
too different, there has been much argument to the exact form of Roman amphitheatres. It is difficult to 
believe they could be elliptical for several reasons. First, because mechanical methods to generate ellipses 
(the gardener’s method mainly) are adequate only for small ellipses. But there is an important loss of 
accuracy when scaling those techniques into larger ellipses produced by non constant elasticity and 
tension of the cord or changes in humidity and temperature. We should also consider that the gardener’s 
method was reported for the first time by Anthemius of Tralles, one of the architects of Hagia Sophia, in 
the 6th century. So it is not proved it was known by Roman architects and related to conic sections. 
 
A second reason is that since the analytic ellipse equation was unknown until the XVIIth century, it was 
impossible to calculate its points accurately. Ovals are made up from arches of constant curvature and any 
point can be easily calculated by means of trigonometry. 
 
And a third reason is that ellipses have different curvature along its points. This generates the problem of 
accurately shaping constructive materials because every block has a different trace. The changing 
curvature also results in the problem of constructing parallel ellipses because a line made up of 
equidistant points from an ellipse is not another ellipse. On the other hand, concentric ovals can be easily 
produced, so it seems reasonable to adopt the oval form to construct the rows of benches in amphitheatres 
without corrupting the whole form. 
 
Unfortunately there is no relevant literature on construction of ovals and ellipses so there is no evidence 
of the use of ovals in amphitheatres. Some scholars have made exhaustive analysis of the data acquired 
from several amphitheatres but it is not possible to get any definitive conclusions. As an example, the 662 
topographic points from the Roman Colosseum showed in figure 6 do not reveal any evidence of the use 
of ovals or ellipses. Some minor gaps appear on both four centred oval and ellipse models but it must 
be considered that the Colosseum has suffered several collapses, including devastating earthquakes and 
stone-robbers. 
 

   
 
Figure 6: Best fit curves overlaid in the Colosseum data (rings 3 and 7). The fitness of the graphical and 
statistical analysis does not allow obtaining a final conclusion about the use of ovals or ellipses by the 

roman constructors (80 AD). 
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Ovals in Baroque Architecture 
 
Baroque was the golden age of ovals, used as a new form of defining architectural space both in floor 
plans and domes. Baldassare Peruzi (1481-1536) was the first architect who discovered the advantages of 
the oval space in the church design. But it was his disciple Sebastiano Serlio who was responsible for the 
spread of the oval form in the late Renaissance and Baroque. In fact, many masons and architects knew 
that starting from Serlio’s constructions, it was possible to create infinitely many ovals for any two axes. 
 

  
 
Figure 7: Floor plane and dome of San Carlo alle Quattro Fontane designed by Francesco Borromini. It 

is an iconic masterpiece of Baroque architecture featuring its fantastic oval constructions. 
 
Giacomo Vignola (1507-1573) was the author of the first known church whose design was based on the 
oval shape (Sant Andrea in Via Flaminia). After Serlio and Vignola, the oval dome spread quickly not 
only in Italy, but in Spain, France and Central Europe. Oval shapes became a symbol of a new dynamic 
architecture, quite different from the classicism of the circular shapes of the Renaissance. Architect 
Francesco Borromini (1569-1667) designed Saint Peter’s Square as the most beautiful square of 
Christianity. “The majestic colonnade embraces the faithful with the motherly arms of the Christian 
Church as they enter the piazza”, in the words of Bernini. The Colonnade enclosing the oval shape 
becomes simultaneously a dramatic frame for the church and an impressive stage for processions and 
other sacred ceremonies. 
 

 
 

Figure 8: Saint Peter’s Square in Rome, constructed by Francesco Borromini under an oval plan. 



14

Ellipses in Modern Architecture 
 
The arrival of Neoclassic and Romantic Architecture in the XVIIIth century recovered the taste for classic 
Greco-Roman shapes. Ovals and ellipses were almost forgotten for over two centuries. It was Philip 
Johnson, the famous architect who first introduced the ellipse in 1986 in his Lipstick building. The 
unusual shape was a requirement of the developer to make the building stand out and compensate for its 
poor location on Third Avenue in Manhattan. According to Johnson, the elliptical shape and surrounding 
colonnade is reminiscent of Baroque architecture, but also succeeds in converting all exterior offices into 
corners. The three big elliptical bodies of the building are not concentric, but share a tangent line in the 
back of the building enhancing the elliptic shapes and lipstick appearance. 
 

                     
 

Figure 9: The postmodern Lipstick building, New York 1986, by Philip Johnson (left) and the Tower of 
Winds, Yokohama 1986, by Toyo Ito (right) are two of the most iconic modern elliptical buildings. 

 
In Yokohama, Toyo Ito transformed a rectangular opaque concrete tower by enclosing it with an elliptical 
envelope. At night, the lights, neon rings and reflective surfaces react to any man made or natural forces, 
like ambient sounds, lights, wind forces or the time of the day. The building creates a wide variety of light 
patterns showing the fragile transparency of the ellipse around the inner monolithic shape. 
 
The discussion of oval versus ellipse construction makes no sense in these times. The use of computers in 
geometric design allows using any pattern without differences in the final layout. It must be remarked that 
due to the stiffness and straightness of modern structural elements all curves are converted into polylines 
with straight segments and then covered by smooth constructive elements with continuous derivative. 
 

                 
 
Figure 10: The Mauritius Commercial Bank project by Jean-Francois Koenig (left) and the Shell House 

by Kotaro-Ide at Nagano, 2008 (right). Both building shows facades with elliptic shape. 
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An ellipse is usually extended to three dimensions by means of a vertical extrusion producing a tower like 
structure as shown in the examples in figure 9. When the extrusion is horizontal the result resembles the 
examples in figure 10. When the ellipse is rotated along one of its axis the result is a quadric surface 
called ellipsoid, which is the analog of the ellipse in three dimensions. An example is shown in figure 11. 
 

 
 
Figure 11: The National Centre for the Performing Arts, usually called The Egg, is an ellipsoid dome of 

glass and titanium surrounded by an artificial lake. Designed by Paul Andreu, Beijing, 2007. 
 
Other variations are the double ellipse programs, which produce complex shapes without completely 
abandoning the basic geometry of the ellipse. There are several ways to juxtapose ellipses as shown in 
figure 12. 
 

           
 

Figure 12: The 73 stories Highcliff Apartments Building in Hong Kong (left) and the Bijlmer Park 
Theather in Amsterdam (right) are examples of juxtaposed ellipses. 

 
 

Superellipses 
 
A Superellipse is a variant of the usual ellipse equation in which the exponent 2 is substituted by a generic 
value n. When n=1 the resulting figure is a diamond, when n=2 the figure is the ordinary ellipse and 
values n>2 produce superellipses. 
 
                      Equation of the Superellipse: 
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Figure 13: Two examples of superellipses: the project of Z15 Tower, the future tallest building in Beijing 

(left) and the Aztec Stadium, constructed for the 1968 Olympic Games in Mexico (right). Many sport 
stadiums feature the superellipse in their floor plans. 

 
Torqued Ellipses 

 
Torqued ellipses are weathered steel sculptures created by the American minimalist sculptor Richard 
Serra. The geometry of the construction consists in a set of ellipses with a continuous rotation at different 
heights. The surface that connects all ellipses is the torqued ellipse. 
 
The same idea has been used in contemporary architecture, featuring the Canton Tower in Guangzhou, a 
600 meter structure designed by Information Based Arquitecture with collaboration from Arup. The 
structure of a torqued ellipse is similar to a hyperboloid where all the circumferences contained in the 
planes perpendicular to the main axis are replaced by rotated ellipses of different ratios. As in the 
hyperboloid, the torque ellipse is a ruled surface, as can be clearly seen in figure 14. 
 

           
 

Figure 14: Torqued ellipse by Richard Serra at Bilbao Guggenheim Museum (left) and torqued ellipse 
structure in the Canton Tower in Guangzhou (right). 
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A variant of the torqued ellipse is the surface constructed with rotated superellipses, which may be named 
as torqued superellipses. A beautiful example and maybe the only one in Architecture is the Museum 
Soumaya in Mexico, designed by the architect Fernando Romero. The building has a height of 46 meters 
and features a coating of 16,000 brilliant hexagons and looks amazing from all viewpoints. 
 

 
 
Figure 15: Structural diagram (left) and torqued superellipse (right) from the Museo Soumaya, 

by architect Fernando Romero, Mexico 2011. 
 
 

Variable Oval Surface 
 
Architect Norman Foster has made a wide use of ovals as described in Serlio’s constructions 450 years 
ago. The Sage Gateshead is a great example of this geometry. A transversal planar four centre oval runs 
along a third axis changing the scale of the oval trace. The longitudinal axis modifies the shape by means 
of a second curve alternating convex and concave smooth curve arches.  
 
The result is a very dynamical surface where the oval structure is almost not recognizable at first viewing 
and only after a detailed analysis can one deduce the hidden geometry of the building. 
 

  
 

Figure 16: The Sage Gateshead, constructed by Norman Foster in 2004. The external surface has the 
shape of a planar four centre oval whose scale changes as it moves along a longitudinal axis. 
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Abstract 
 

This paper will explore the conceptualization and creation of a fourteen-pointed star polygon design, found 

on a mimbar in the Mosque of al-Mu’ayyad in Cairo, Egypt, and also as Plate 169 of Bourgoin’s Arabic 

Geometrical Pattern and Design.  Our exploration specifically seeks to answer the question, “How did the 

original designer of this pattern determine, without mensuration, the proportion and placement of the star 

polygons comprising this design?”   In addition, we propose a plausible Euclidean “point-joining” compass-

and-straightedge reconstruction for it.  

 

 

Introduction 

 
The most commonly-occurring star polygons found in geometric Islamic art are those that may be created 

within regular n-gons (polygons with n sides) that are constructible in the Euclidean sense, where n = 4, 

5, 6, 8, 10, 12, or 16.  That is, these regular polygons may be created using only a compass to make 

circles or arcs and a straightedge to connect points of intersection between segments or circular arcs.  For 

n = 7, 9, 11, 13, 14, 18…, the regular n-gons (and likewise, the corresponding regular n-star polygons) 

may only be constructed approximately using these tools. Of these non-constructible star polygons, we 

will explore the conceptualization and creation of a 14-pointed star polygon design found on the mimbar 

(or pulpit) of the Mosque of al-Mu’ayyad in Cairo, Egypt (shown below in Figure 1).  This image is a 

cropped and rotated version of a photograph known as catalog number EGY 1217 of the Pattern in 

Islamic Art:  The Wade Photo Archive [1]. 

 

 
 

Figure 1.  Design on the mimbar (or pulpit) of the Mosque of al-Mu’ayyad in Cairo, Egypt from the 

Pattern in Islamic Art:  The Wade Photo Archive, catalog number EGY 1217 
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This same 14-star design also appears in skeletal form as Plate 169 of J. Bourgoin’s Arabic Geometrical 

Pattern and Design [2], a rich published source of 190 Islamic patterns, first published in 1879 and based 

upon drawings of Islamic monuments in Cairo and Damascus.  Our exploration specifically seeks to 

answer the question, “How did the original designer of this pattern determine, without mensuration, the 

proportion and placement of the star polygons comprising the design?”  In addition, we propose a 

plausible Euclidean “point-joining” compass-and-straightedge reconstruction for each, using the 

Geometer’s Sketchpad software program [3], the electronic equivalent of the compass and straightedge. 

 

 

Construction of a “Nearly Regular” 7-gon, a 14-gon, and the 14-Pointed {14/6} Star Polygon 

 
A straightforward technique for creating star polygons, discussed previously in [4], is to initially construct 

an n-gon inscribed within a circle and then draw in the corresponding regular n-pointed star by 
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midpoints of the n-gon’s edges.  A figure formed in this way is mathematically designated as a {p/q} star 

polygon, where p and q are positive integers that are also relatively prime, with q < p/2.   

 

To create a “nearly regular” seven-pointed {7/2} star polygon, construct an approximately regular 

heptagon and then connect every other vertex with line segments.  A very good approximate heptagon 

and its inscribed seven-pointed star polygon is shown in Figure 1a.   Once a heptagon is created within a 

circle, a 14-gon may be generated by constructing lines through the vertices of the heptagon and the 

midpoints of the corresponding opposite line segments.  The points where these lines intersect the circle 

divide the circle into 14 approximately congruent arcs and also form the vertices of the 14-gon, as shown 

in Figures 1b and 1c.   
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Now connect every third point with line segments until Figure 2a is achieved.  Repeat this procedure 

with the points of intersection generated in the previous step and shown in Figure 2b.  To generate the 

{14/6} star polygon of interest, connect every sixth point of intersection created in the previous step, as 

indicated in Figure 2c.   

 

      
Figure 2a.      Figure 2b.       Figure 2c. 
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Now connect every third point with line segments until Figure 2a is achieved.  Repeat this procedure 
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Figure 2a.      Figure 2b.       Figure 2c. 

Erase the segments generated in the second step and highlight the appropriate segments to yield the image 

in Figure 3a.  To create additional points of intersection from which the segments forming the hexagonal 

“arrow” shapes may be made, extend these segments until they intersect the segments generated in the 

first step; two of these chords, shown in Figure 3b, are used to form the arrow at the top of the fourteen-

pointed star.  Highlighting the segments of interest and erasing the segments generated in the first step 

results in Figure 3c.  For the remainder of this paper, the 14-pointed star polygon along with the 14 

arrows will together be referred to as the “fourteen star polygon” or the “star polygon” or the “star.”  

 

       
Figure 3a.      Figure 3b.      Figure 3c.  

  

 

Placement of the Stars in Bourgoin’s 14-pointed Star Designs, Plates 164 - 167 
 

As we have already shown, generating the stars is a relatively straightforward process.  In a previous 

paper [4], the author discussed this and also how to place the stars relative to one another in four other 14-

star designs, Plates 164 – 167 of [2].  In Plate 165, (see Figure 4a on the next page), the stars met two at 

a time, with the arrow tip of one star just touching an arrow tip of an adjacent star.  In Plate 166, (see 

Figure 4b), if the stars are surrounded by the circles used in their original construction, each circle was 

tangent to two others, and the two middle circles overlap, enclosing their two arrow tips that touch.   

 

   
 

Figure 4a. Design of Bourgoin’s Plate 165   Figure 4b.  Design of Bourgoin’s Plate 166 
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In Plate 164, (see Figure 4c) the arrows of adjacent stars overlapped and merged to form pairs of 5-

pointed stars, and the lozenge-shaped petals of adjacent stars just touched.  In Plate 167, (see Figure 4d) 

Bourgoin has separated the four stars so that none are touching but the circumscribing circles are 

positioned to be tangent in pairs.  Between the stars in all of these designs there is an area to be filled in 

with other polygons.  (For more information on these four designs, see [4].)   

 

 \ 

Figure 4c. Design of Bourgoin’s Plate 164   Figure 4d.  Design of Bourgoin’s Plate 167 

 

 

Construction of the 14-Star Design on Bourgoin’s Plate 169 

 
One plausible method for positioning the stars in Bourgoin’s Plate 169 is to use a grid of regular 

hexagons that are displaced by half of an edge length.  The hexagonal grid, along with inscribed circles 

superimposed on the design, is shown in Figure 5.  It is in the circles inscribed within these hexagons that 

the stars will be constructed, as previously discussed, and shown in Figure 6a on the following page.  

 

   
Figure 5.  Design on the mimbar (or pulpit) of the Mosque of al-Mu’ayyad in Cairo, Egypt 

from the Pattern in Islamic Art:  The Wade Photo Archive, catalog number EGY 1217 
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Erase the hexagons and extend existing line segments until they intersect other rays, thus yielding the 

image in Figure 6b.   

 

   
 

Figure 6a.          Figure 6b.  

 

 
Erase the circles, construct midpoints of four segments and draw horizontal line segments between these 

points as shown in Figure 6c.  Extend additional segments and erase unneeded segments to form the non-

convex 12-sided polygon in the center of the figure flanked on either side by two non-convex octagons, 

shown in Figure 6d. 

 

  
 

Figure 6c.         Figure 6d. 
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Construct two additional horizontal line segments through existing points to obtain four additional points 

as shown in Figure 7a.  From these points, draw line segments to points on the stars to the left and right 

of the center space as shown and also erase unnecessary segments to produce the image in Figure 7b. 

 

  
 

Figure 7a.         Figure 7b. 

 
Construct midpoints of many of the segments in the center of the image so that additional segments may 

be constructed by joining them to themselves and to other existing points, as shown in Figures 7c and 7d.  

The unneeded segments are then erased. 

 

  
 

Figure 7c.         Figure 7d. 
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Construct two additional horizontal line segments through existing points to obtain four additional points 

as shown in Figure 7a.  From these points, draw line segments to points on the stars to the left and right 

of the center space as shown and also erase unnecessary segments to produce the image in Figure 7b. 

 

  
 

Figure 7a.         Figure 7b. 

 
Construct midpoints of many of the segments in the center of the image so that additional segments may 

be constructed by joining them to themselves and to other existing points, as shown in Figures 7c and 7d.  

The unneeded segments are then erased. 

 

  
 

Figure 7c.         Figure 7d. 

 

Next, construct and then bisect the horizontal line segment in the center of the design.  Using the midpoint 

of this segment as the endpoint of two smaller segments, find their midpoints as well, as shown in Figure 

8a.  Additional line segments may now be constructed between these midpoints.  By erasing unneeded 

line segments and highlighting the appropriate ones we obtain Figure 8b.  

 

  
 

Figure 8a.         Figure 8b.  

 
To complete the design, extend and find midpoints of some existing line segments, as shown in Figure 

8c, and then erase the unneeded segments to produce the required image shown in Figure 8d.  Having 

found a way to construct the polygons between the stars is sufficient to be able to continue the design 

indefinitely.  

  
 

Figure 8c.         Figure 8d. 
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A skeletal version of four of the stars and the interstitial space is given in Figure 9a, and a colored 

rendition of the design, created by the author using the Geometer’s Sketchpad and Paint [5] software 

packages, is given in Figure 9b.   

 
Figure 9a.         Figure 9b. 

 

 

Discussion 

 
Reconstructing the fourteen-pointed star polygon design found on the mimbar of the Mosque of al-

Mu’ayyad (taken from a photograph known as catalog number EGY 1217, of The Wade Photo Archive) 

and also found on Plate 169 of Bourgoin’s Arabic Geometrical Pattern and Design was relatively 

straightforward once the stars were positioned using a grid of regular hexagons that were displaced 

relative to each other by half of an edge length. A compass-and-straightedge “point joining” technique 

was used exclusively to produce the design by constructing the requisite points, circles, line segments, 

and midpoints.  That is, no measurements of any kind (for example of angles or line segment dimension) 

were employed as may have been the practice of medieval artisans. 
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Abstract

Sébastien Truchet was a pioneer in applying combinatorics to the study of regular patterns. He enumerated the
patterns that could be formed from square tiles that were divided by a diagonal into a black and a white triangle
Following Truchet, others have created Truchet-like tilings composed of circular arcs and other motifs. These
patterns are all based on Euclidean tessellations, usually the tiling by squares. In this paper we pose corresponding
enumeration questions about hyperbolic Truchet tilings and show some sample patterns.

1. Introduction

About 300 years ago the French Dominican Father Sébastien Truchet enumerated Euclidean patterns that
could be formed by using square tiles that are divided into two 45◦ equilateral triangles, one black and one
white. The goal of this paper is to try to enumerate corresponding patterns in the hyperbolic plane. Figure 1
shows a hyperbolic Truchet pattern.

Figure 1: A hyperbolic Truchet tiling based on the {4,6} grid.

We begin with a short history of Truchet tilings. Then we review hyperbolic geometry and regular
tessellations, upon which both Euclidean and hyperbolic tilings are based. Next we examine hyperbolic
patterns based on “square” grids, which are most directly related to Truchet’s tilings. More generally we
show how a p-sided polygon for can be subdivided by triangles for p �= 4. We also investigate p-sides tiles
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decorated with circular arcs. Finally, we show sample patterns and indicate possible directions of further
research.

2. A Short History of Truchet Tilings

Sébastien Truchet was born in Lyon, France in 1657, and became a Dominican Father as an adult. In addition
to Truchet tilings, he is well known for his work in typography and the “Roman Du Roi” typeface that is
an ancestor of “Times New Roman”, in particular. Truchet also designed many French canals and invented
sundials, weapons, and special implements for transporting trees (from Wikipedia [11]). He published his
work on tilings “Memoir sur les Combinaisons” in the Memoires de l’Académie Royale des Sciences in
1704 [10]. In this paper Truchet considered all possible pairs of juxtaposed squares divided by a diagonal
into a black and a white triangle. This was most likely the first published systematic enumeration of simple
tile motifs. In the mid 1700’s, Pierre Simon Fournier created Truchet patterns based on more complex
motifs [2]. In 1942 M.C. Escher enumerated 2 × 2 tiles of squares formed from squares containing simple
motifs, thus extending Truchet’s idea of 2 × 1 tiles (see the section Other experiments in regular division,
pages 44–52 of [8]). In 1987 Truchet’s treatise was translated into English (by Pauline Bouchet), with some
history and comments on Truchet’s theory (by Cyril Smith) in a Leonardo paper which also reproduced
Truchet’s figures [9]. The Smith-Bouchet paper re-ignited interest in Truchet’s tilings, and also introduced
the “circular arc” Truchet tile, which has been popular with other pattern creators. Since then Browne
[1], Lord and Ranganathan [3], Reimann [5, 6], and Rhode [7] have extended Truchet’s ideas to other 2-
dimensional motifs and to 3-dimensional patterns.

3. Hyperbolic Geometry and Regular Tessellations

Truchet used the Euclidean tessellation by squares for his tiling patterns. Others have also used the other
two regular Euclidean tessellations, by equilateral triangles and by regular hexagons, as a basis for their
Truchet-like tilings. In this paper, we show how to extend Truchet tilings to the hyperbolic plane, which has
an infinite number of regular tessellations.

It has been known for more than a century that there is no smooth embedding of the hyperbolic plane
into Euclidean 3-space. Thus we must rely on models of hyperbolic geometry. Specifically, we use the
Poincaré disk model, whose (hyperbolic) points are represented by Euclidean points within a bounding
circle. Hyperbolic lines are represented by (Euclidean) circular arcs orthogonal to the bounding circle
(including diameters). The hyperbolic measure of an angle is the same as its Euclidean measure in the disk
model (i.e the model is conformal), but equal hyperbolic distances correspond to ever-smaller Euclidean
distances as figures approach the edge of the disk, as can be seen in Figure 1.

There is a regular tessellation, {p, q}, of the hyperbolic plane by regular p-sided polygons, which we
call p-gons, with q of them meeting at each vertex, provided (p − 2)(q − 2) > 4. If (p − 2)(q − 2) = 4,
one obtains three Euclidean tessellations: the square grid {4, 4}, the hexagon grid {6, 3}, and the equilateral
triangle grid {3, 6}. Figure 2 shows the regular hyperbolic tessellation {4, 6}, and Figure 3 shows that
tessellation superimposed on the Figure 1 pattern.

4. Hyperbolic Truchet Patterns Based on “Squares”

The simplest Euclidean Truchet tiling is the one created by translations of the basic square — a square
divided into a black and a white isosceles right triangle by a diagonal, as shown in Figure 4 on the left.
There is another Truchet tiling obtained by rotating the basic squares about its vertices, so that the 45◦

vertices meet at alternate vertices of the {4, 4} grid, as shown on the right of Figure 4. These are patterns A
and D of Truchet’s Memoir [9] and the only ones adhering to the map-coloring principle: no triangles of the
same color share and edge.
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Figure 2: The {4,6} tessellation Figure 3: The {4, 6} superimposed on the Figure 1
pattern.

Figure 4: (a) A “translation” Truchet tiling, (b) A “rotation” Truchet tiling.
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In the hyperbolic plane, if one translates a decorated 4-gon of a {4, q} to the next 4-gon to the right,
then upward, then to the left, etc., in a counter-clockwise manner about a q-vertex, the decorated 4-gon will
return to its orginal position after q steps. However, the decoration will be rotated by an angle of qπ/2.
Therefore, to obtain a consistent tiling by a decorated 4-gon, qπ/2 must be a multiple of 2π, i.e. q must be
divisible by 4. Figure 5 shows the “smallest” hyperbolic example with q = 8.

If we apply the rotation construction in the hyperbolic case, the base angles of the black and white
isosceles triangles meet at some of the vertices of {4, q} and the vertex angles of the isosceles triangles meet
at the other vertices of {4, q}. In this case q must be even to satisfy the map-coloring principle. Figure 1
shows the pattern when q = 6; Figure 6 shows the result when q = 8. In Figures 5 and 6 small circles
have been placed at the vertex angles of the black and white isosceles triangles to illustrate the differences
between the hyperbolic “translation” and “rotation” patterns. Truchet did not restrict himself to the map-

Figure 5: A “translation” Truchet pattern
based on the {4, 8} tessellation.

Figure 6: A “rotation” Truchet pattern based
on the {4, 8} tessellation.

coloring principle, allowing triangles of the same color to share an edge. Figure 7 shows such a pattern, F
in Truchet’s Plate 1 of his Memoir [9], which mixes “translation” and “rotation” edge matchings. Figure
8 shows a hyperbolic version of this pattern based on the {4, 6} tessellation, which has large, alternately
colored hexagons (since q = 6) instead of the squares of pattern F.

5. Truchet Tiles with Multiple Triangles per p-gon

In his Memoir, Truchet considered rectangles composed of two basic squares (each divided into a black and
white triangle). Each square could be given one of four orientations, and the second square could be placed
adjacent to each of the four edges of the first square, giving 64 different rectangles. However, many pairs
of rectangles are equivalent by rotation, yielding 10 inequivalent rectangles — shown in Truchet’s Table 1
[9]. There are only six inequivalent rectangles if reflections are allowed, but Truchet did not consider them.
Truchet constructed 24 patterns from his rectangles, six on each of Plates 1, 2, 3, and 4 of his Memoir. He
labeled those patterns with the letters A through Z and &, omitting J, K, and W (we have seen A, D, and F
above).

Though it is natural to tile the Euclidean plane by rectangles, it is more difficult to tile the hyperbolic
plane by “rectangles” — quadrilaterals with congruent opposite sides. Instead, we divide the p-gons of a
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Figure 7: Truchet’s pattern F, which does not
adhere to the map-coloring principle.

Figure 8: A hyperbolic Truchet pattern corre-
sponding to Truchet’s pattern F.

{p, q} divided into black and white π
p - π

q - π
2 basic triangles by radii and apothems, since p-gons easily tile

the hyperbolic plane. To satisfy the map-coloring principle, the basic triangles in the p-gon should alternate
black and white, and that p-gon should be rotated about the midpoints of the edges to extend the pattern.
There are two such patterns for any p and q, one obtained from the other by interchanging black and white.
Figure 9 shows such a pattern based on the {4, 6} tessellation — probably a better hyperbolic analog to
Truchet’s pattern A of Plate 1 than Figure 5 above.

If we do not require the pattern to be map-colored, there are many more possibilities. There are N2(2p)
possible ways to fill a p-gon with black and white basic triangles, where Nk(n) is the number of different
n-bead necklaces that can be made using beads of k colors, and is given by [12]:

Nk(n) =
1

n

∑

d|n
ϕ(d)kn/k

where ϕ(d) is Euler’s totient function (which gives the number of positive integers less than or equal to d
and relatively prime to it). This can be seen as follows: we consider the perimeter of the p-gon to be the
necklace, and the two basic triangles adjacent to each edge as “beads” (2p beads total) of one of two colors.
If we consider our “necklaces” to be equivalent by reflection across a diameter or apothem of the p-gon,
there are fewer possibilities, given by Bk(n) the number of n-bead “bracelets” made with k colors of beads
[12]. It seems to be a difficult problem to enumerate all the ways such a p-gon pattern of triangles could be
extended across each of its edges, though an upper bound would be (2p)pN2(2p).

Figure 10 shows a {4, 6} pattern with pairs of black and white triangles adjacent across apothems,
analogous to Truchet’s pattern E of Plate 1. Figure 11, also based on {4, 6}, uses the same triangles within
the 4-gon as Figure 10, but extended differently across the 4-gon edges. Like Figure 8, it is analogous to
Truchet’s Pattern F of Plate 1.

Finally, we show patterns based on p-gons with p �= 4. Figure 12 shows a tiling generated by alternating
pairs of black and white basic triangles within a 6-gon. white triangles; it is analogous to Truchet’s pattern
N on Plate 2. Figure 13 shows a tiling generated by a symmetric arrangement of basic triangles within a
5-gon. These two patterns are not related to any patterns in Truchet’s Memoir.
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Figure 9: A pattern generated by alternate
black and white triangles in a 4-gon.

Figure 10: A pattern generated by paired
black and white triangles in a 4-gon.

Figure 11: Another pattern generated by
paired black and white triangles in a 4-gon.

Figure 12: A simple {6, 4} pattern.
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6. Patterns with Other Motifs

Other designers have used motifs other than the triangularly divided square to make their Truchet-like pat-
terns. One choice, first described by Smith is a motif consisting of two quarter arcs of circles with each arc
connecting the midpoints of two adjacent edges of the square [9]. Such patterns can be regular, random, or
even carefully arranged so as to spell words [5]. Figure 14 shows a hyperbolic pattern based on two-arcs
motif (superimposed on the underlying {4, 6} tessellation).

Figure 13: A new {5, 4} Truchet-like tiling. Figure 14: A hyperbolic Truchet arc pattern
on a {4, 6} grid.

One can generalize the “arcs” motif to 2n-gons: there would be n non-intersecting arcs connecting the
midpoints of the edges of the 2n-gon. The number of possible 2n-gon tiles is the same as the number
of ways to connect 2n points on a circle with non-intersecting chords. It is the Catalan number C(n) =
2n!/[n!(n + 1)!] as noted for Sloane’s sequence A000108 [4]. As is the case with the triangle-decorated
p-gons, the number of possible patterns is bounded above by (2n)2nC(n), though it seems difficult to get
an exact enumeration.

7. Future Work

We have shown some Truchet patterns in the hyperbolic plane based on the regular {p, q} tessellations. We
have also noted some combinatorial results on the number of possible tiles for “square”, triangle-decorated
p-gon, and arc Truchet patterns. But there are other questions that remain to be answered about the the
possible number of patterns that can be formed in a regular way from such tiles. These questions seem to be
difficult.

Since some Truchet patterns have black-white color symmetry, it would also seem natural to investigate
the coloring of Truchet tilings with more than two colors. Another direction of future research would be to
create Truchet patterns on hyperbolic Archimedean tessellations.
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Figure 1. Studio Gang Architects, Lincoln Park Pavilion, 2010, 
Property of Lincoln Park Zoo, Chicago, Il. Image Steve Hall © Hedrich Blessing. 
Figure 2. Interior view of Lincoln Park Pavilion. Image © Studio Gang Architects. 
 
The Lincoln Park Pavilion, designed by the Chicago firm Studio Gang Architects, is shown in Figures 1 
and 2 and is a striking example of architecture as sculpture. The Pavilion is part of a larger project that 
transforms an urban pond from the 19th century into a contemporary natural environment that includes a 
boardwalk as shown in Figure 1, with the Pavilion serving as an outdoor classroom, as shown in Figure 2.  

 

  
Figure 3. Form, Space, and Light. Image Steve 
Hall © Hedrich Blessing. 
 

Figure 4. Nested Fiberglass domes. Image © 
Studio Gang Architects. 
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The pavilion form is a classic arch enclosing an open-ended rectangular space. The enclosure is an 
elegant three dimensional tessellation consisting of curved oval windows, formed by joining prefabricated 
wooden wave forms. The wave forms remind one of nearby Lake Michigan. The tessellated windows are 
covered with fiberglass domes, except for the lowest windows which are left open. The interaction with 
sunlight is a beautiful example of sculptural architecture as form, space, and light, as shown in Figure 3.  
 

  
Figure 5. Night view with pond. Image © Spirit of 
Space. 

Figure 6. Night view with indoor lighting. 
Image Steve Hall © Hedrich Blessing. 

 
 

  
Figure 7. Night view, detail. Image © Spirit of 
Space. 

Figure 8. Night view with pond reflection. 
Image © Spirit of Space. 

 
The fiberglass domes nest nicely to form a three-dimensional tessellation, as shown in Figure 4. The night 
views are especially striking, as shown in Figures 5-8.  

 
The night views in Figures 7 and 8 remind one of Islamic art, as a result of the wave form joining. In 
conclusion, the pavilion is attractive sculptural architecture both day and night.  
 
The photographs are courtesy of Studio Gang Architects. For additional projects, see www.studiogang.net 
 



37

Linear Knot Sculptures 
 

Nat Friedman 
nat.isama77@gmail.com 

 
Abstract 

 
Linear knots (stick knots) consist of a finite number of connected straight line segments (rods). Linear 
knots are discussed that are constructed by (1) wood dowels connected with plastic tubing, (2) bent wire, 
and (3) welded steel rods. Sculptures of trefoil knots and figure eight knots are considered. 
 

Trefoil Knots 
 
Linear knots are usually discussed with reference to the minimum number of rods necessary 
to construct knots. For example, six rods are necessary to construct a trefoil knot. A model of a trefoil 
knot sculpture made with six rods of welded rebar is shown in Figure 1. 
 

  
Figure 1.Trefoil Knot, 2011, Rebar steel. Figure 2. Trefoil knot, 2011, six 18 inch steel 

rods. 
 
A trefoil knot made with six welded steel rods that are 18 inch long and 1 inch in diameter is shown in 
Figure 2. The welded ends will be filled in, ground down and rounded in the final version, as well as for 
other welded steel rod sculptures shown below. 

 
For a trefoil knot, six rods suffice to obtain a fairly open sculpture as seen in Figures 1 and 2. Using more 
rods, we can obtain more interesting configurations. First we consider the trefoil knot shown in Figure 3 
which is made of soapstone hand carved in Africa and can be purchased on Ebay under “knot sculptures”. 
It is about 7 inches high. This sculpture has an interesting double arch configuration. 
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Figure 3. Soapstone double arch 
trefoil knot. 

Figure 4. Linear double arch trefoil, 2011, seven steel rods. 

 

A linear version of the double arch trefoil is shown in Figure 4 and is made of seven welded steel rods. 
Three rods are 18 inches long, which form the corresponding upper arch, here with a horizontal top. The 
remaining four rods are 13 ½ inches long and form the lower part consisting of two parallel base rods and 
the two rods forming the lower arch which is an inverted V. The upper arch could be modified by 
replacing the horizontal rod with two rods as an inverted V.  

  
Figure 5. Trefoil model made with seven connected 
wood dowels. 

Figure 6. Variation of figure 5 configuration. 

 

Another linear trefoil made with seven wood dowels each eight inches long and connected by plastic 
tubing is shown in Figure 5. This configuration was discovered by manipulating a trefoil model with 
seven connected dowels.  
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The advantage of the dowel model is that it is easy to manipulate it into different configurations. For 
example, the two horizontal parallel rods in Figure 5 are arranged perpendicularly in Figure 6 to obtain a 
different configuration.  

With dowel models, there are unlimited variations and one simply plays around manipulating the model 
looking for appealing configurations. In order to go from a dowel configuration to an actual sculpture, it 
is helpful to first make a sketch or take a photograph. It is also helpful to have someone measure angles 
off the dowel model while you hold it. The sketch or photo and angle measurements can be used to make 
a bent wire model, as shown in Figure 7. For example, the dowel model has seven equal length dowels. 
Thus one can take a straight length of wire and mark points to divide it into seven equal lengths. The wire 
is bent appropriately at each marked point corresponding to the measured angles. Usually one can wing it 
and bend the wire by eye so as to get a corresponding wire model. This will involve some final bending 
adjustments so that the model “looks right” and the two ends meet. A little extra can be left at both ends 
to bend into a little join as shown in Figure 7. 

  
Figure 7. Bent wire trefoil model with seven 
segments. 

Figure 8. Trefoil knot, 2011, seven 18 inch steel 
rods. 

 

The advantage of the wire model is that it is permanent and can also be used for angle measurements. 
Also one can manipulate it if desired and it keeps the new configuration. The wire model can now be used 
to construct a sculpture using welded steel rods as shown in Figure 8. Here angles are copied when 
welding rods. This takes some study in choosing the order of the rods to be welded so that the last two 
rods have a certain amount of freedom to allow them to meet. Note that the sculpture in Figure 8 
corresponds to Figure 6 with the horizontal rods perpendicular. 

Figure Eight Knots 

The minimum number of rods in a linear model of a figure 8 knot is 7. However, configurations with 7 
rods are not that sculpturally appealing. It was found that appealing figure 8 sculptures could be made 
with eight equal length rods. A dowel model is shown in Figure 9. Note that there are four alternating 
crossings. 
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The configuration in Figure 9 is quite flat. To obtain a three-dimensional configuration, it was found that 
the lower left 90 degree corner could be lowered down, and then the knot can be manipulated as shown in 
Figure 10. Another version of the model is shown in Figure 11. Note that the four alternating crossings 
can still be seen in Figure 11 but the knot is much more three-dimensional, rather than planar as in Figure 
9. A corresponding wire model is shown in Figure 12. Here the ends don’t meet, but this may lead to a 
more desirable so-called open configuration (see below), or suggest lengthening the end rods so they do 
meet. 

A sculpture 
corresponding 
to the wire 
model is shown 
in Figure 13. 
Another 
position of the 
same form in 
Figure 13 is 
shown in 
Figure 14.  
Recall that a 

sculpture is a form in a position and two sculptures consisting of the same form are called congruent. 
Thus the Figure 8 sculptures I and II in Figures 13 and 14 are congruent. Another congruent sculpture is 
shown in Figure 15. 

   
Figure 11. Alternate Figure 8 

dowel model. 
Figure 12. Figure 8 wire model. Figure 13. Figure 8 I, 2011, 

eight 18 inch steel rods. 
 

Open Knots 

When one ties a knot, the ends are loose and the knot is called an open knot. When the ends are joined, 
the knot is called a closed knot. Open knots are not interesting from a mathematical viewpoint because 
they can all be deformed (manipulated, untied) into the same thing: a loose straight string. 
Mathematicians only consider a closed knot, which is simply called a knot. The knots we considered 
above are closed knots. 

  
Figure 9. Figure 8 knot with eight 

dowels each 8 inches long. 
Figure 10. Figure 8 dowel model. 
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Figure 14.  Figure 8 II, 2011, eight 18 inch steel rods. 
Figure 15. Figure 8 III, 2011, eight 18 inch steel rods. 

Figure 16. Open Figure 8 knot, 2011, 
seven 18 inch steel rods. 

 

The main question in knot theory is when can one knot be deformed into another knot? For example, it 
can be shown that a trefoil knot cannot be deformed into a figure 8 knot. Intuitively, deformation allows 
bending, stretching, or shrinking, but not cutting and rejoining. There is a precise mathematical definition 
of allowable deformations. However, open knots are interesting from a sculptural viewpoint. An open 
figure 8 knot sculpture is shown in Figure 16. 

If we consider the picture in Figure 16 as a two-dimensional diagram, the so-called mirror image 
is obtained by reversing under and over crossings. One can see that (a perfectly symmetric version of the) 
image in Figure 16 can be given a half-turn rotation about the center to obtain the mirror image. For 
example, the loose end on the left in Figure 16 crosses under and the loose end on the right crosses over. 
They will exchange places under a half-turn rotation. This is the idea underlying the property that the 
figure 8 knot can be deformed into its mirror image. Although a trefoil knot has one less crossing, it can 
be shown that a trefoil knot cannot be deformed into its mirror image.  

 
Another knot 
that can be 
deformed into 
its mirror image 
is knot 63. In a 
knot table, 
knots are listed 
according to the 
least number of 
crossings in a 

diagram of the knot and knot 63 is the third knot with six crossings. An open wire model of the knot is 
shown in two views in Figure 16. The loose right end of the wire model in Figure16 should actually be 
longer to correspond to the same length as the loose left end. The wire model would then rotate into its 
mirror image under a half-turn. 
 
There are other knots with more than six crossings that can be deformed into their mirror images. Some of 
them have open versions, with the same number of crossings as the corresponding closed knot, that also 
rotate into their mirror images.  

  
Figure 16. Two views of an open wire model of 63. 
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sculpture is a form in a position and two sculptures consisting of the same form are called congruent. 
Thus the Figure 8 sculptures I and II in Figures 13 and 14 are congruent. Another congruent sculpture is 
shown in Figure 15. 

   
Figure 11. Alternate Figure 8 

dowel model. 
Figure 12. Figure 8 wire model. Figure 13. Figure 8 I, 2011, 

eight 18 inch steel rods. 
 

Open Knots 

When one ties a knot, the ends are loose and the knot is called an open knot. When the ends are joined, 
the knot is called a closed knot. Open knots are not interesting from a mathematical viewpoint because 
they can all be deformed (manipulated, untied) into the same thing: a loose straight string. 
Mathematicians only consider a closed knot, which is simply called a knot. The knots we considered 
above are closed knots. 

  
Figure 9. Figure 8 knot with eight 

dowels each 8 inches long. 
Figure 10. Figure 8 dowel model. 
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Abstract 
 

This paper introduces Surfer, an interesting artistic-mathematical software, and presents examples of the 
author’s contributions to the type of art generated by the software.  

 
 

Introduction 
 

Nowadays, digital software that results in a visual or audible output can be exploited as a scientific 
medium for creating art. Digital art incorporates different fields of art and science and, more importantly, 
makes it possible to exploit the very awesome interaction between pure mathematics and its visual results. 
Significant landmarks of such phenomena can be seen in the history of evolution of computer -generated 
art. 

One such interesting software is Surfer [1]. Surfer is a program to visualize real algebraic geometry in 
real-time. The surfaces visualized are given by the zero set of a polynomial equation in 3 variables. Surfer 
is based on the program Surf and has been developed for the exhibition IMAGINARY [2], organized by 
the Mathematisches Forschungsinstitut Oberwolfach created for the Year of Mathematics 2008 in 

Germany [1]. 

The interface of the software consists of a 
polynomial bar, a viewer, and some coloring, 
lighting, and positioning adjusters, as shown in 
Figure 1 below. The equation bar, at the bottom 
of the page, contains the polynomial equation 
that the user would like to have generate its 
geometric surface, which is shown visually 
inside the viewer. Numbers and variables x, y 
and z composing the polynomial could be typed 
simply through the keyboard or by means of keys 
cited at the top of the equation bar. Viewer, 
covering the left half of the page, directly shows 
visual consequences of an equations’ changes 
instantly. Here is the very close interaction 
between the aesthetic part of the artist’s mind or 

feeling and his mathematical abilities. He can change the equation  to obtain more aesthetic and eye 
catching results. Without such a fast medium of digital computing, a useful interaction would not be 
possible. And such interaction is what allows the artist to try different possibilities and tame seemingly 

 
Figure 1: Surfer interface 
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untamable rough mathematical shapes. Without this type of interactive chase, significant mathematical 
aesthetics could not be discovered. 

On the right hand side, buttons like coloring, gallery, info, and animate allow one to specify the colors of 
both sides of the surfaces, displaying galleries of preexisting equations and selecting among them to start 
new projects, and making an animation by means of provided gadgets. 

Other buttons are open, save, back, and forward which make it possible to jump to the back or next 
polynomial preexisting in the gallery. The full-screen button is also very useful to have a better overall  
view of the shape and make minor changes. 

Some other useful adjustments are cited under the Scene Properties button, which manipulate side colors, 
background color, illumination, material, position and resolution more professionally and numerically. 

 

  
 
Figure 2: Melting Chocolate (Acquired the second place at Cambridge Surfer Picture Competition, 
http://www.imaginary2008.de/cambridge/galerie_view.php?gal=4), (2010; © Mehrdad Garousi). 
Equation: (a*(-2))/125+x^8+y^8+z^9-2*x^6-2*y^6-2*z^6+1.25*x^4+1.25*y^4+1.25*z^4-0.25*x^2-
0.25*y^2-0.20*z^2+0.031=0 
 
Figure 3: Buddhist lads at the back seat (Acquired the third place at Zurich SURFER Image Contest, 
http://www.imaginary-exhibition.com/zuerich/galerie_view.php?gal=6 ), (2010; © Mehrdad Garousi). 
Equation: (a*(-5))/125+x^5+y^5+z^8-2*x^8*y^4-2*z^6+1.25*x^4+1.25*y^4+1.25*z^4-0.25*x^2-
0.25*y^2-0.25*z^2+0.03125=0 

 
Working with SURFER is straight forward. One can just insert a polynomial in the three variables x, y 
and z and obtain a real time visualization of the zero set, which in general is a surface with some 
singularities and self-intersections. Using the cursor and a scroll bar, the surface can be rotated in every 
direction and the visible sector can be rescaled [3]. 

Surfer is very handy and recreational. Both users with profound backgrounds, such as Klaus, S. [3] and 
Stephan, K. [4], or lesser backgrounds can play around with equations and may attain planned or possibly 
random results. A significant property of surfer is the mathematical purity that is used in it to create art. It 
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Working with SURFER is straight forward. One can just insert a polynomial in the three variables x, y 
and z and obtain a real time visualization of the zero set, which in general is a surface with some 
singularities and self-intersections. Using the cursor and a scroll bar, the surface can be rotated in every 
direction and the visible sector can be rescaled [3]. 

Surfer is very handy and recreational. Both users with profound backgrounds, such as Klaus, S. [3] and 
Stephan, K. [4], or lesser backgrounds can play around with equations and may attain planned or possibly 
random results. A significant property of surfer is the mathematical purity that is used in it to create art. It 

does not have any additional tools of image processing which could lead the result further than the 
generative mathematics creating them. Surfer directly discloses visual results of equations with 
possibilities in manipulating colors and illumination of surfaces or the amount and direction of light 
sources. You can open the software and start examining visual changes resulting from random or logical 
changes in different equations that lead to significant works. This software can engage you for days and 
weeks resulting in mathematical prints for displaying on your walls with typed generative equations under 
them similar to what creators of the software, Mathematisches Forschungsinstitut Oberwolfach and the 
Technical University Kaiserslautern, have been doing in several competitions and exhibitions in several 
countries. 

IMAGINARY has been shown more than 30 times in Germany, Austria, Ukraine, England, Switzerland 
and the US [5]. 

Here, I am presenting a number of my own works created entirely by Surfer. Keep in mind that opening 
my equations on your own might not have the same result in your viewer. Such differences are because of 
zoom, color and/or position issues which are not contained in the equations. They are only included inside 
the file which is saved via the software save button. 

Surfer can be downloaded at  http://www.imaginary-exhibition.com/surfer.php . More news about 
IMAGINARY exhibitions or competitions can be found at http://www.imaginary-
exhibition.com/news.php .  

Figures 2-13 show examples of the author’s works. 
 

  
 
Figure 4: Standing Mathematical Sculpture (Acquired the second place at Paris Surfer Competition, 
http://images.math.cnrs.fr/Resultats-de-la-competition-d.html ), (2010; © Mehrdad Garousi). Equation: 
(x^2+y^2+z^2-(0.5+2*a)^2)^2-(3.0*((0.5+2*a)^2)-1.0)/(3.0-((0.5+2*a)^2))*(1-z-sqrt(3)*x)*(1-
z+sqrt(3)*x)*(1+z+sqrt(3)*y)*(1+z-sqrt(3)*y)=0 
 
Figure 5: Clover, (2010; © Mehrdad Garousi). Equation: (x^2+y^2+z^2-(0.5+2*a)^2)^2-
(3.0*((0.5+2*a)^2)-1.0)/(3.0-((0.5+2*a)^2))*(1-z-sqrt(3)*x)*(1-z+sqrt(3)*x)*(1+z+sqrt(3)*y)*(1+z-
sqrt(3)*y)=0 
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Figure 6: 3D Symmetric Sculpture, (2010; © Mehrdad Garousi). Equation: (x^2+y^2+z^2-
(0.5+2*a)^2)^2-(3.0*((0.5+2*a)^2)-1.0)/(3.0-((0.5+2*a)^2))*(1-z-sqrt(3)*x)*(1-
z+sqrt(3)*x)*(1+z+sqrt(3)*y)*(1+z-sqrt(3)*y)=0 
 
Figure 7: Atom, (2010; © Mehrdad Garousi). Equation: (x^2+y^2+z^2-(.8+.3*a)^.8)^2-
(1.5*((0.9+a+b+c)^2)-1.3)/(2.0-((0.5+2*a)^2))*(.5-z-sqrt(2)*x)*(.5-z+sqrt(2)*x)*(.5+z+sqrt(2)*y)*(.5+z-
sqrt(2)*y)=0 
 
Figure 8: Floating Cube, (2010; © Mehrdad Garousi). Equation: (x^2+y^2+z^2-(0.5+2*a)^2)^2-
(3.0*((0.5+2)^2)-1.0)/(3.0-((0.5+2*a)^2))*(1-z-sqrt(3)*x)*(1-z+sqrt(3)*x)*(1+z+sqrt(3)*y)*(1+z-
sqrt(3)*y)=0 
 
 
 

   
 
Figure 9: The Sacred Bowl, (2010; © Mehrdad Garousi).Equation: (a*(-2))/125+x^8+y^8+z^9-2*x^6-
2*y^6-2*z^6+1.25*x^4+1.25*y^4+1.25*z^4-0.25*x^2-0.25*y^2-0.25*z^2+0.031=0 
 
Figure 8: Mathematical Cake, (2010; © Mehrdad Garousi).Equation: (y*x^3+x*z^3+z*y^3)*(x+y+z)=0 
 
Figure 11: Blue Ellipse, (2010; © Mehrdad Garousi). Equation: (y*x^3+x*z^3+z*y^3)*(x+y+z)=0 
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Figure 12: Color Smoke, (2010; © Mehrdad Garousi). Equation: (a*(-5))/125+x^5+y^5+z^5-2*x^5-2*y^5-
2*z^5+1.25*x^5+1.25*y^4+1.25*z^4-0.25*x^2-0.25*y^2-0.25*z^2+0.03125=0  
 
Figure 9: Martian Pot, (2010; © Mehrdad Garousi). Equation: (x^4+y^4+z^4-(1.5+a)^.8)^2-
(2.0*((0.6+a+b+c)^2)-1.2)/(3.0-((0.5+2*a)^2))*(1-z-sqrt(2)*x)*(1-z+sqrt(2)*x)*(1+z+sqrt(2)*y)*(1+z-
sqrt(2)*y)=0 
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Abstract 

This paper aims to show some amazing aspects of the new mathematical medium of 3D fractal imaging 
by a step-by-step pictorial representation of a journey in a specific 3D fractal in order to view a number of 
delightful scenes. 

Introduction 

Fractal image making has been a very popular medium of art for about four decades, creating terrific 
images with specific mathematical properties belonging to other fractional dimensions. Fractals result in 
some of the oddest man-made images in recent decades. However, their revelation was always limited to 
2D representations on monitors or papers and screens until a few years ago when there were 
investigations in order to experience fractals in three dimensions. Now we can have some kind of three 

dimensional experiences of fractal dimension on 
our monitors [1]. Despite the flatness of 2D 
fractals, now we have a solid 3D shape with 
fractal properties in three directions. Wherever 
you magnify, you see awesome 3D self-
similarities. In 3D fractals you can go inside a 
fractional dimension with everything three 
dimensional around you; like the real world. It can 
be conceived as the most realistic journey inside a 
world belonging to other dimensions. 

Previous Work 

A large class of fractal geometrical shapes, 
including the Sierpinski tetrahedron is self-similar. Such shapes can be constructed with an algorithm that 
exploit the self-similarity property of shapes [4] by repetitively take the union of transformed (e.g. scaled, 
rotated, translated, mirrored or skewed) copies of an initial shape.  An advantage of union operation is 
that it is possible to ignore it since using disconnected copies will visually give the same results. With 
such an algorithm, the number of the copies increases exponentially in every iteration. Therefore, after a 
few iterations a good approximation of final shape can be obtained. Because of its simplicity, this 
approach is widely used to create fractal shapes. Another important property of this approach is that it is 
dimension independent, i.e. the same conceptual algorithm can be used both for 2D and 3D shape 
construction. Moreover, this algorithm is independent of the way the shape is represented, e.g., shape can 

 
Figure 1: Triangles World, 2011, © Mehrdad 
Garousi. 
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be a set of points, an implicit surface, a polygonal surface, or a NURBS surface. Regardless of the type of 
the initial shape, the same algorithm can be used. One of the problems with these algorithms is that the 
resulting fractal consists of a large number of disconnected objects. If one wants to construct a physical 
sculpture, s/he has to take union to obtain a connected surface that can be physically printed.   

A particularly useful algorithm based on union of transformed shapes is Iterated Function Systems. 
Barnsley showed that a set of contractive transformation is sufficient to construct the Fractal shape by 
randomly applying transformations to a point [4]. Regardless of the initial position, the point will 
eventually attract the fractal shape and trajectory of the point will draw Fractal. IFS algorithm can also 
work in any dimension. A popular software xenodream is based on IFS algorithms. The problem with IFS 
is that the resulting 3D shapes do not describe a volume. There is still a need to convert these shapes into 
a surface to build a physical sculpture.  

 

Another problem with these union based algorithms is that they can create only truly self-similar shapes. 
Regardless of the shape of the initial object, a given algorithm approaches the same target shape. These 
algorithms do not allow construction of different target shapes from different initial shapes. For instance, 
it is not possible to construct a Sierpinski octahedron since such a shape cannot be expressed union of its 
transformed copies.  

Fortunately, union based approach is not the only way for constructing fractal shapes. A notable example 
is one of Mandelbrot's alternative Sierpinski triangle constructions that relies upon `` cutting out tremas'' 
as defined by Mandelbrot [6]. Akleman and Srinivasan observed that an attractive property of the 
Mandelbort’s construction is that it can be generalized using set-difference operation [5]. The initial shape 
can be a convex polygon and the construction algorithm can simply be as from each convex polygon cut a 
convex polygon that is created by connecting the midpoints of each edge. If one interprets the ``cut'' 
operation as an ``exclusive-or'' operation instead of a set-difference, it is possible to safely apply this 
construction to even non-convex polygons.  However, it is hard to extend this algorithm to three 
dimensions using set operations.  

To construct a generalized Sierpinski polyhedron, we need to take a set-difference (or ex-or) of the initial 
polyhedron with a polyhedron that is constructed by connecting midpoints of each edge in the original 
polyhedron.  Construction of a polyhedron by connecting the midpoints of each edge of the initial 
polyhedron can be hard in solid modeling. First of all, set difference is an operation that is hard to obtain 

   
Figure 2: Magnification of 2.3 Figure 3: Magnification of 10 Figure 4: Magnification of 2.3 
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be a set of points, an implicit surface, a polygonal surface, or a NURBS surface. Regardless of the type of 
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algorithms do not allow construction of different target shapes from different initial shapes. For instance, 
it is not possible to construct a Sierpinski octahedron since such a shape cannot be expressed union of its 
transformed copies.  

Fortunately, union based approach is not the only way for constructing fractal shapes. A notable example 
is one of Mandelbrot's alternative Sierpinski triangle constructions that relies upon `` cutting out tremas'' 
as defined by Mandelbrot [6]. Akleman and Srinivasan observed that an attractive property of the 
Mandelbort’s construction is that it can be generalized using set-difference operation [5]. The initial shape 
can be a convex polygon and the construction algorithm can simply be as from each convex polygon cut a 
convex polygon that is created by connecting the midpoints of each edge. If one interprets the ``cut'' 
operation as an ``exclusive-or'' operation instead of a set-difference, it is possible to safely apply this 
construction to even non-convex polygons.  However, it is hard to extend this algorithm to three 
dimensions using set operations.  

To construct a generalized Sierpinski polyhedron, we need to take a set-difference (or ex-or) of the initial 
polyhedron with a polyhedron that is constructed by connecting midpoints of each edge in the original 
polyhedron.  Construction of a polyhedron by connecting the midpoints of each edge of the initial 
polyhedron can be hard in solid modeling. First of all, set difference is an operation that is hard to obtain 

   
Figure 2: Magnification of 2.3 Figure 3: Magnification of 10 Figure 4: Magnification of 2.3 

in 3-space. Second, for most cases, the faces may not be triangular and hence may not be planar, which 
further complicates the set-difference procedure. Akleman and Srinivasan developed a topological graph 
theory based procedure to obtain exclusive-or with insert-edge operations. Their method also guarantees 
to obtain a connected and manifold surface. Therefore, resulting shapes can be converted to physical 
sculptures.  

All aforementioned methods are objects based and, therefore, require a large amount of data to represent a 
reasonably complicated 3D fractal shapes. If our goal is simply to create images of 3D Fractals, then the 
methods for rendering Julia sets are more suitable. It is not a well-known fact but many Fractal algorithm 
can be expressed as Julia-like recursive functions [10]. Moreover, Hart developed efficient algorithms to 
render such deterministic fractals [8 ,11] including computing the surface normal [7] and finding fast 
intersection with fractal surfaces  [9,10].  He also created five Sierpinski Platonic shapes, which he called 
“the Five Non-Platonic Non-Solids” [12]. In this paper, I investigate closely Sierpinski Icosahedron, one 
of his creations using Mandelbulb3D [2]. 

 

There are a few pieces of software that enable us to feature 3D fractals in our personal computers. One of 
the very marvelous examples that I usually use is Mandelbulb3D [2]. This software uses Hart’s method 
for rendering [11]; therefore it provides excellent 3D lighting and coloring with realistic sense of space. 

Examples 

The most tempting property of Mandelbulb3D software is its awesome 3D navigator that makes it 
possible to wander quickly and freely without a lot of interruptions. You can walk inside completely 
bizarre 3D constructions and easily steer wherever you want like a first-person investigation digital game. 
In such a medium, the role of the artist actually changes and borders between art, esthetics, and artist 
outstandingly blur. Artists themselves do not know where they are going and what they will encounter at 
each step. They play a role as adventurers who travel through unknown environments and select certain 
scenes to shoot and show to others. 

 

   
Figure 5: Magnification of 411 Figure 6: Magnification of 2.8 x 

10^7 
Figure 7: Magnification of 3.3 x 
10^8 
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In Mandelbulb3D everything starts from a few defined fractal formulas depicted as simple 3D shapes at 
the center of the viewer of the software. By manipulating the defining parameters you can make minor or 
major changes in the viewer. Then, you can start your journey by successive magnifications and 
orientations. Though virtually you must be able to magnify unlimitedly, due to some current technical 
errors, after a large number of zooms shapes start collapsing! We all hope such limitations will be 
dispelled in the near future so as to be able to travel toward infinity inside 3D fractals, beyond existing 

confines. 

After specifying the desired formulas, it is possible to mix different formulas and develop hybrid 
formulas. This way during iterations, you can specify where formulas are carried out and where they stop. 
This allows one to push aesthetic limitations a little further and results in more diversity in subsequent 
images. 

 

Mandelbulb3D also has another excellent property for animating fractals. It is enough to define key-
frames at certain places and the software itself will calculate motions between those keys. In other words, 
you can have an animation of the journey you are experiencing via the navigator. 

   
Figure 8: Magnification of 1.5 x 
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Figure 9: Magnification of 3.18 
x 10^10 

Figure 10: Magnification of 4 x 
10^9 

   
Figure 11: Magnification of 4.1 
x 10^10 

Figure 12: Magnification of 1.39 
x 10^12 

Figure 13: Magnification of 4.8 
x 10^10 
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In this paper, I am going to present a pictorial report of a trip that I had in a 3D fractal from the nearest 
shapes to the farthest possible currently. It must be mentioned that in my first trip into this mixture of 
formulas I concurrently defined key-frames wherever I stopped and the result was an animation which 
can be watched at http://www.youtube.com/watch?v=P5EkdJRtF-4 . 

In the middle of the journey, I do not know why, suddenly I decided to escape from the environment 
surrounding me and the last one third of the animation displays my effort to find a way out; maybe, 
somewhere around Figures 9, 10, and 11 that I was stuck around a magnification, going here and there. 

 

 

Making this animation, I did not actually know anything about what awaited me ahead and like a real 
traveler I started from Figure 2 and continued according to whatever was my instant aesthetic desire. It 
can be thought of as a subconscious trip in fractal space. During my trip I viewed a lot of interesting and 
eye-catching images, as shown in Figures 2 to 17. Among several scenes, I finally chose the most exciting 
for me to present as a still work of art, as seen in Figure 1 called Triangles World. 

Figure 2 displays the icosahedron based on which the fractal is constructed. This fractal is wholly a blend 
of five different fractal formulas each of which is activated in specific iterations with specific properties. 
Two well-known examples of them are IcosahedronIFS and Menger3 that cause the first icosahedral 
shape in Figure 2 and one of the most interesting parts of this journey that takes place at Figure 7. 
Although it is expected to have the Sierpinski pattern infinitely continuous, suddenly at a magnification of 
3.3 x 10^8, a triangular pattern starts vanishing.  In Figure 8 it gets clearer that a new squarish 3D pattern 
is showing up. Figure 9 assures us that we are going to have a Menger Sponge! Yes, a Sierpinski fractal 
changes to another Sierpinski fractal. This phenomenon is visible when the ending iteration number of the 
first fractal is executed and the iteration series of the next one starts. From Figure 10 the effects of other 
remaining formulas can be seen as well in form of the chaos over the arrangement and architecture of 

  
Figure 14: Magnification of 4 x 10^11 Figure 15: Magnification of 1.7 x 10^12 
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shapes. It must be said it is also possible to have parallel formulas carried out. In the last steps, there has 
remained no effect of any formula except for the one causing the vivid Menger Sponge pattern in Figures 
16 and 17. Finally Figure 17 displays the hatch through which I escaped from the marvelous trip I had. I 
obliged myself to find a real exit only because I was making an animation parallel and needed to have a 
good end. Artists looking for satisfying landscapes to shoot can have any kind of endless journey and 
finish it whenever they find something appealing or they can search, search, and search. 

More of my 3D fractals can be found at http://mehrdadart.deviantart.com . 
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Abstract 
 

In most math classrooms, the traditional homework assignment is to tell the students to do a certain number of problems.  
However, in some math classrooms, it may make more sense to give a different type of homework assignment.  This assignment 
asks them to use their creativity to produce a “work of art”.  This paper will focus on the reasons why to give such an assignment, 
the grading process and samples of student work. 
 

Introduction 
 

In geometry or liberal arts math classes, having an additional way to assess student learning may be 
helpful to the instructor.  If you assign a creative project, you will learn about the student’s other talents, 
interests and understanding of mathematical concepts.  By making this type of assignment, you will have 
a new way to assess students’ understanding [1].  In addition, a poor math student may be able to excel in 
this area and thereby, give you a better understanding of his/her thinking process and knowledge of the 
subject matter.  Also, this type of assignment forces the students to see mathematics as more than just 
numbers and formulas.  It humanizes the subject and helps the students see that math can contribute to 
beautiful art.  In addition, most students like to do a different type of assignment and one, which 
challenges their creativity in new ways.  The students present their projects to the class and helps 
everyone to get to know one another. 
 

 Incorporating the project into the classroom 
 

At the beginning of the semester include the creative project assignment in your syllabus.  As you go over 
the important points on the syllabus with your class, point out that a new type of assignment will be part 
of their grade.  If you have examples of work from previous students, this is a good time to show those 
successful projects.  About two or three weeks before the project is due, give the students the guidelines 
about the type of project you want (see below) and the grading criteria (see below).  Go over in detail 
both pieces of information.   
 

Below is the sample criteria from the following class. 
 

Math in Art and Nature, 56-1725 
Columbia College 

Science and Mathematics Department 
 
 
 
The characteristics of the projects and grading criteria are as follows. 
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1) You should be creative in combining mathematics and art.  You may use ideas from class; 

such as, line designs, tessellations, or develop your own idea related to concepts in the course 
or mathematical concepts. If you are not sure about your project, talk to me to make sure that 
your idea does relate to mathematics and to our course.   

 
2) The project should be done with care.  The amount of time and effort in creating the project is 

important.  NEATNESS COUNTS.  However, spending a lot of time on your project, does 
not guarantee that you will receive an A on your project. 

 
3) The project should be a work of art and be ready to be hung in an art gallery.  Framing or 

mounting your artwork will make it look more professional and look, as though, it is ready to 
be installed in a gallery. 

 
The students need to have a clear understanding of what is expected of them and how it will be evaluated.  
In 1995 when I first started using this type of assignments in my Math in Art and Nature class, I was 
rather prescriptive.  I told the students that they had to do a line design, a tessellation, a construction, etc.  
I got projects that were nice but nothing really creative or unexpected.  Since then I have given the 
students a great deal of latitude in what they can do and I have been amazed.  Once I allowed them to do a 
math/art project that was somehow related to our class, the projects became very interesting and diverse.  
Many of the students created a project using their major.  Some created songs, videos, photographs and 
one young man made a dress out of silk which combined the Fibonacci numbers with a tessellation.  
There is one caveat – and that is in my m class, we do some math/art creative activities during class.   For 
example, on the day that we talk about the Fibonacci numbers, we also make a “Fibonacci plaid”.  On the 
day that we discuss triangles and Pythagorean triples, we make an origami triangle box and a 
“mathematical quilt” using the Pythagorean triples. If this is not the case in your classroom, then you may 
want to direct the students to some math/art websites for ideas. 
 
On the day that the projects are due, each student comes up to the front of the classroom and talks about 
his/her project.  Then the class has an opportunity to ask the student questions about his/her work.  This 
semester, for the first time, each student in the class graded each project. The students were given a form 
to complete for each project and then their results were averaged and included as part of the grade.  
Although my portion of the grade was the most, allowing the students to contribute to the grade negated 
any feeling that the teacher just gave good grades to the students that the teacher liked.  It made the 
grading more objective and fair but more time consuming for the grading process. 
 
The form that the students completed for each project is shown below. 
 

Math in Art and Nature 
Evaluation of student projects 

 
Classmates’ name           
In making your evaluation, keep in mind the following criteria: 
 Connection to the class 
 Aesthetic appeal  (ie exhibit ready) 
Number of points           (0  to 10) 
 
Your name       
 
The form used by the instructor to grade the projects is next. 
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Math in Art and Nature 

Project Grading Form 
 

Name        Major       
 
Title of project        
 
Explain how your project is related to this class.       
 
                 
 
                 
 
May the instructor use your project in an educational setting?         
What materials did you use to make your project?       
 
                  
 
                  
 
Why did you choose this project?  How did you feel about creating it?    
 
                   
 
                   

             
 

To be completed by the instructor after class presentation of the project 
Quality Assess Max Points Points Awarded 

 
Effective connection to the course 10 

 
 

Qualities of creativity & 
originality 

5  

Overall appearance of the project 
(is it exhibit ready?) 

15  

Quality of classroom presentation 5 
 

 

Classmates evaluation 10 
 

 

Instructor’s comments 
 
 
 

  

Total 45  
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Here are two examples of student projects.  The first one is by Ernest Hill and is made out of odd pieces 
of wood.  The perspective that he got is amazing since the size of the wood is not uniform.  The second 
project is by Joseph Koch.  He made is a drawing of Pythagoras and supper-imposed on it is a 
construction of the Lute of Pythagoras. 
 

  
 
             
Having the students do a non-traditional assignment may be somewhat daunting at first.  If you structure 
it and make some suggestions about what constitutes a math/art project, then you will be pleasantly 
surprised with the talent and creativity in your class. 
 
 
[1]Papacosta, Pangratios and Hanson, Ann, Artistic Expressions in Science and mathematics, Journal of 
College Science Teaching, vol. XXVII, vol. 4, February 1998. 
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Abstract 

This paper briefly discusses the concept of apollonian gaskets, and demonstrates possible variations of 
models generated using different initial shapes. 

Introduction 

An “apollonian gasket” is an iteratively-generated diagram composed of tangent circles [1,2,3,5]. 

The basic step in the generation process is to identify an area defined by three curves (typically the space 
enclosed by three mutually-tangent circles, but these curves can be straight lines, or other curves), and 
create within this space a circle which is tangent to the three edges which define the space1.  Creating this 
circle will create three new spaces, in which the process can be repeated – it can occur recursively. We 
can call the space bounded by three curves, within which we can recursively create these apollonian 
circles, the “bounded” space. 

The recursive iterations can occur for some number of generations, or until a minimum circle size has 
been reached. (Reaching a target minimum radius may take different numbers of generations in different 
areas of the diagram.) 

 
Figure 1. Starting with three mutually-tangent curves, we create a bounded space within which we can generate a set of 
apollonian circles. The diagram shows how we iteratively generate new circles in newly-created bounded spaces. 

In the purest sense, we can begin with a single circle, and two (or more) inscribed circles as the initial 
figure, creating bounded spaces within which the apollonian gasket can be computed. 

Figure 2. Creating apollonian circles within an initial figure of a circle two equal circles within it. 
                                                           
1 Many of the examples presented here use straight lines and/or intersecting (not tangent) circles as their initial 
starting diagrams, and some use two or more-than-three curves (how this is done is explained in the text). 
Whether these can be considered “true” or “pure” apollonian gaskets is still unclear to the author. 

Here are two examples of student projects.  The first one is by Ernest Hill and is made out of odd pieces 
of wood.  The perspective that he got is amazing since the size of the wood is not uniform.  The second 
project is by Joseph Koch.  He made is a drawing of Pythagoras and supper-imposed on it is a 
construction of the Lute of Pythagoras. 
 

  
 
             
Having the students do a non-traditional assignment may be somewhat daunting at first.  If you structure 
it and make some suggestions about what constitutes a math/art project, then you will be pleasantly 
surprised with the talent and creativity in your class. 
 
 
[1]Papacosta, Pangratios and Hanson, Ann, Artistic Expressions in Science and mathematics, Journal of 
College Science Teaching, vol. XXVII, vol. 4, February 1998. 
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Figure 3. Creating apollonian circles within an initial figure of a circle three equal circles within it. 

 

However, equally interesting results can be generated with different initial figures: polygons within which 
circles are inscribed, circles and polygons divided with lines and/or circular arcs, and other curves (such 
as ellipses and splines). 

Related Models and Concepts 

A Sierpinski triangle (or Sierpinski gasket) is a very close relative of the Apollonian gasket. It is also a 
recursive process, based on triangles (Sierpinski gasket : apollonian gasket :: triangle : circle).  
(Variations on this model/process can be explored as well.) 

Figure 4. The generation of the the Sierpinski gasket. 

The Algorithm 

The algorithm used in generating the models in this paper uses (a variation of) the “smallest size” method 
(instead of the “number of generations” method). I found this method provided more visually-pleasing 
and graphically consistent results. In generating the models, I established a “critical size” value (using the 
circle’s radius). If a computed circle was larger than this size, I added three new circles in the spaces 
surrounding the just-generated circle within its bounded space. As I generate the circles, I color-code 
them according to their size: circles larger than the critical size are green; circles smaller than the critical 
size are red; if a circle was exactly the critical size it was colored yellow. I could have said “only circles 
larger than the critical size will exist in the model”, in which case there would be only green (and perhaps 
yellow) circles in the model, but my criteria was for the rule rather than the results, so there are in fact red 
circles which are sometimes much smaller than this critical value. 

I was undecided about what to do about the yellow circles, which, within a roundoff tolerance, were 
exactly at the critical size. Should I add new circles around these (as if they were green), or should I stop 
there (as if they were red)? I did something in-between: instead of adding three new circles around these 
circles, I added just one – the largest of the three. 
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3 
 

    
Figure 5. Using color helps determine (and demonstrate) whether to continue running the circle-generating rules in newly-
created bounded spaces. 

Automating this process is a bit challenging. So far I have been able to automate the generation of 
apollonian circles within a space bounded by three circles, if none of the circles are inside of the other 
circles (so they all have “positive” curvature with respect to the bounded space). In other cases, the 
algorithm was carried out manually, although I created some tools to ease this tedious process a bit, and 
the color-coding was essential in deciding, after adding a new circle, whether or not to continue creating 
circles in that same bounded space. 

     
Figure 6. The red curve generates different types of bounded spaces. In the figure on the left, the red curve has “positive” 
curvature with respect to the bounded area, and is similar to the other curves which bound that same space. In the middle figure, 
the curve is a straight line, and has “zero” curvature. In the figure on  the right, the red curve has negative curvature with 
respect to the bounded area. 

A Couple of Surprises 

It is not the intention of this document to be mathematically rigorous. There have been papers written 
which go into depth on the geometry of the circles2. 

In generating these models, and experimenting with various initial figures and visually and/or 
geometrically interesting patterns, I came across two very interesting discoveries. 

In generating apollonian circles, each new circle typically requires three curves as its generator. 
Sometimes two or four (or more) curves can be used. If we start with a regular polygon – a square, a 

                                                           
2 Many of these papers, interestingly, describe the "curvature" of the circles by applying numeric values to the 
circles, which is the inverse of the radius of the circle (smaller circles have greater curvature and higher numbers; 
larger circles have smaller curvature; straight lines have a curvature of 0; and if a circle is concave instead of 
convex (for example, is tangent to two others in such a way that it encompasses both of them) then it has a 
negative curvature -- there are incredibly interesting (and beautiful) relationships among these numeric values. 
Since a circle's radius is more comfortable for me to work with as I'm generating and studying these forms, these 
are the values that I'm using in generating new circles, and comparing them. 
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pentagon, … (a triangle already has three edges, and will generate apollonian circles in the typical way), 
we can generate a circle which is tangent to all of the edges, and then normal apollonian circles can be 
added in the spaces near the vertices of the polygon. If the polygon has greater than three sides and is not 
regular, it may not work. So if more than three curves are used, there must be symmetry, such that the 
resulting circle touches each of the generating lines and yields resulting spaces which are bounded by 
three curves (or are also symmetrical in a similar way). 

If two circles intersect, the area shared by the two circles can accommodate another circle within it, which 
is tangent to the original two. The two circles can be equal (in size) or not, and one of them can in fact be 
a straight line. 

One of the “surprises” was not really a surprise at all. I started with two initial figures to generate two sets 
of apollonian gaskets: two golden rhombuses, with acute angles of 36 and 72 degrees (the same 
rhombuses used in Penrose tilings). Since these rhombuses are full of golden relationships, I wondered if 
the resulting apollonian circles would also have golden relationships. They do (at least the initial 
generation).  I think it would not be surprising if later generations also had similar properties, but I have 
not found these. Looking at curvature values instead of radius values might make some of these 
relationships easier to see. 

 
Figure 7. Within initial figures of golden rhombi (rhombus A has an acute angle of 36° and rhombus B has an acute angle of 72°) 
we generate a set of apollonian circles. The first circle in each of the rhombi creates four new bounded spaces within which the 
process can continue in the typical way described. The radii of the first circles have a golden relationship (B/A = 1.618…). 

The second discovery was shocking. I started with a circle and a chord going through it. We can say that 
two sets of apollonian gaskets then are generated for each circle - one set on each side of the chord. If the 
chord is the diameter of the circle, the sets are symmetric and identical. But as the chord moves away 
from the diameter, each set will be different. 
The initial circle which is added between the line and the circle (a case where only two curves (instead of 
three) are used to generate this “first-generation” circle) has its tangent point at the middle of the part of 
the line which is contained inside the circle. This is true in both parts of the circle which is divided by the 
line. Unless the line is the diameter of the circle, these first generation circles will be unequal in size (this 
seems obvious and intuitive). What was startling to me was that the second-generation circles (which uses 
the original encompassing circle, the line, and each first-generation circle as its generators) will be 
identical in size!, regardless of where the line is placed. 
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Figure 8. Diagram showing the interesting and surprising relationship of second-generation apollonian circles generated within 
the two bounded areas of an encompassing circle and a chord. As the chord location varies, the initial circles (A and B) will be 
different (obviously), but the next generation circles will be equal (not at all obvious). 

 

Extending the Concept to 3D and Higher Dimensions 

It has been shown that the concept of apollonian gaskets can be extended from two dimensions (using 
tangent circles) to three dimensions (using tangent spheres) and surfaces [2,4,6]. We can create three-
dimensional analogies to some of the two-dimensional diagrams presented here, using planes where 
straight lines have been used, and polyhedra where polygons have been used3. It seems likely that this can 
be extended to higher dimensions as well. 
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Figure 9. Sets of apollonian gaskets modeled within a square. 
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Figure 9. Sets of apollonian gaskets modeled within a square. 
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Figure 10. Sets of apollonian gaskets in a hexagonal configuration. A set of „triangular‟ modules was created, which are 
repeated to created these models. Combinations of these modules can also fill a plane. 
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Figure 11 (top). Apollonian gaskets modeled in a circle can recursively be applied to circles within the model. 

Figure 12 (bottom). Color can be used in various ways: circles can be color-coded by size, or by generation. In this example, 
circles were color-coded based on their location in the overall geometry of the model. 
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Abstract

Repeating patterns in architecture are utilized in elements at a variety of scales; scale of a facade, perforated 
ceilings, and wall reliefs to carpeting and tile stonework. The Truchet tiling concept can now be reconsidered as one 
means to develop a modular non-repeating pattern. This paper explores some of the basic concepts of Truchet 
tilings and variations developed; and some current examples of using these methods with digital generation and 
fabrication methods.   

Background

A number of formal repeating pattern concepts and system exist for designers and architects to utilize. 
They may as simple as uniform tilings and patterns, frieze and wallpaper groups, or complex as systems 
that can use randomness for placing individual patterns. Grunnbaum and Shephard offer a comprehensive 
and systematic treatment of the subject [1]. With the greater introduction of digitally based generative 
systems, algorithmically generated patterns, and greater means of digitally controlled fabrication, the 
concept of many-of-one is becoming one-of-many. As real-time steaming fabrication evolves, the need 
for non-repeating patterns will be easier to satisfy.  

a.                                b.                                c.            
Figure 1: Truchet pattern, Smith variation, Smith shading. 

One such patterning concept which can be revisited is the modular shape combinations first observed and 
developed by Father Sebastien Truchet. Father Truchet (1657-1729) was of the French clergyman living 
in Lyon. He is known for being active in areas of mathematics, hydraulics, graphics, and typography. An 
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excellent repository of links to Truchet’s writings and plates can be found on Jacques.Andre’s website 
[2]. Figure 1a displays one of the many periodic patterns he developed. In 1704 he published “Memoir sur 
les combinaisons” in which a number of plates were developed to show periodic patterns. In 1722, P. 
Dominique Douat further elaborates on Truchet tilings [4]. Lord & S Ranganathan cover both Truchet and 
Douat’s patterns [5].  The Andre website also includes the writings of Douat [2].  

One of the basic concepts that one can see of Truchet tilings is that adjacent tiles can create much larger 
contiguous edge connecting patterns. In 1987 Cyril Smith analyzed the structure of Truchet’s  tilings and 
first abstracted them into simple diagonal lines and then into two arcs starting and ending at edge 
midpoints, Figure 1b [6].  Smith wrote about the closures that were being formed, circles; and also 
showed an example that was color filled to further highlight these positive and negative, concave and 
convex patterns, Figure 1c.  

In 1977, Martin Gardner wrote about non-periodic tilings on dart and kites that included arcs connecting 
midpoint edges [7]. Later, 1989 and 1990 Clifford Pickover also wrote about arc tiles used the generation 
of random tiling patterns [7][8]. C. Browne further investigated the shading of the Truchet tilings by 
including examples using triangular and hexagonal tiles [10][11]. 

Figure 2: Toy Designing Blocks by Graham, 1934. 

Figure 3: Examples of Graham’s Toy Designing Blocks. 

Following non-academic research and writing, we find that in 1934, a patent for a Toy Designing Block 
was granted to Tom C. Graham, 1,973,564, Figure 2 and 3 [12] This patent expired and 1991 patent 
5,011,411 was granted to a Method of Making a Non-Repetitive Modular Design to Andreas F. Loewy, 
Figure 4 [13]. It expired in 2003 for nonpayment of maintenance fees.  Researching previous art of these 
patents also uncovered US Patent 1,4,53,728 Means for Devising Ornamental Designs granted in 1923 to 
F. J. Rhodes, Figure 5 [14].  It has at least of the modular patterns that appear later, the two arcs at the 
midpoints.

Figure 4: Examples of Loewy modular design.

As demonstrated by Loewy, the concept of how the adjoining edges could extend to a larger design was 
well understood, as seen here in his description: 

“Each module is made in the following manner. Assume that the regular polygon has n sides. First, one 
chooses a set of points on one of the sides of the polygon, the points being distributed symmetrically 
around the midpoint of the side. Then, one duplicates this arrangement of points on each of the remaining 
sides. Next, one connects pairs of points with lines, such that every point is connected to one line. The 
lines can be straight or curved, but they must be continuous. The lines are drawn such that the resulting 
pattern is not symmetrical around any imaginary straight line joining any pair of vertices of the polygon. 
Finally, one can optionally fill in some or all of the spaces defined by pairs of lines, or by one or more 
lines and one or more sides of the polygon, with color or with some other design element.” [13]  

Figure 5: Examples of Rhodes ornamental design, 1923. 

More recently, US Patent 3,464,145 Set of Blocks for Generating Designs was granted to P. C. Martin in 
1969, Figure 6 [15] and US Patent application 10/792,627, System of Combinable Patterns that Generates 
Artful Designs submitted in 2004 by Pablo Fernando Cha included many of the same concepts as others 
before him, Figure 7 [16]. This application was abandoned in 2008. 

Figure 6: Examples of Martin blocks, 1969.
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Figure 7: Examples of Cha ornamental design, 2004. 

It should be noted that none of the patent descriptions ever mentioned the work of Truchet, Smith, or any 
others noted here; and also none of the writings of Smith and others ever mention the work being applied 
and granted for patents. 

The Truchet tilings have also appeared in three-dimensions, Figure 6 as in Browne [10]. Bowne also 
includes a diagram that has the tiling on the face of a cube; it is a diagram for the resulting surface model. 
Browne also extends these three-dimensional models with the use of spheres.  

Figure 8: Examples of three dimensional Truchet-like modules.

Developing Truchet-like Tilings 

The initial interpretation of the underlying concept of Truchet tilings was the connection of the midpoints 
of adjacent edges. We have seen in the patent search that others have also developed tiles using two and 
three equal subdivisions of edges. We have also seen the edge points connected with arcs and with 
straight line segments or ribbons. To further explore this tiling concept, a number of versions were 
developed in 2005, with two and three edges points were developed. From that series a total of three tiles 
emerged. Figure 9 displays the first set of tiles developed. It these tiles symmetry is across the diagonal. 
The ribbon connector was used to develop a coloring density between the foreground and background. 
The initial tiles were fabricated with a laser cutter using two tones of wood, in this case, inexpensive 1/8” 
MDF, Medium Density Fiberboard. Referring to Figure 10, the backing, the bottom layer, was simply a 
11 inch square of light toned MDF and the top layer consisted of a series of 1.25 inch ribbons of a darker 
toned MDF. The plan for these wooden tiles was to attach them to a wall surface in a manner that they 
could be reoriented individually on a regular basis. The full fabrication of this version was never realized. 
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toned MDF. The plan for these wooden tiles was to attach them to a wall surface in a manner that they 
could be reoriented individually on a regular basis. The full fabrication of this version was never realized. 

Figure 9: Initial tile patterns developed.

Figure 10: Laser cut tiles, using two tones of wood.

Theses initial tiles were also replicated in a 20 inch square array, randomly rotating each tile as it was 
placed. Figure 11 displays a black and white version of these images, a color series of these were also 
developed and titled Paths [17]. The Path series explores using a single tile or randomly selecting one 
from two or more different tiles. Using multiple tiles in a single tiling offered a greater opportunity for 
variation.

Figure 11: Image printed version of the random tilings.

The Path series also mimics the concept Sol LeWitt developed in his Wall Drawings, in particularly #358, 
1981, which consists of arcs drawn from opposite corners of a square grid pattern [18]. The Wall 
drawings consisted of drawn arcs or lines connecting opposite corners of a grid where his crew was 
instructed to determine the orientation of the arc or line as they executed each individual module. In this 
case, the software replaces the crew and an algorithm using a random function computes the rotation of 
the module, replacing the decision of the individual crew person. Each time a tiling pattern is pattern 
executed a unique piece is generated. 
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For an installation at the 2010 Art Loop Open, an interactive modular tiling piece was proposed and 
selected. A version of the tiles was developed as a four inch magnet. A set of steel sheets were placed in a 
six by three foot frame.  A total of 128 magnets were placed on the surface and viewers were encouraged 
to pick up any one of them, rotate it, and place it back. Figure 12 displays a single magnet and some 
initial arrangements, and Figure 13 shows the complete installed piece onsite. 

Figure 12: Printed magnet tiles, red ribbons on black background. 

Figure 13: Installation at 2010 Art Loop Open in Chicago. 

Research has also found similar tile designs, both as a square tile and a triangular tile configuration by 
Japanese architect and designer Asao Tokolo, shown in Figure 14 [19]. His website does not cover the 
design development of these tiles nor how they originated. His designs consist of five edge points and are 
more free-form in the ribbon shapes included.   

Figure 14: Magnet designs by Asao Tokol

The wall piece let to an interest to developing a larger, more variable piece that could also be interactive 
but possibly more three-dimensional. This let to developing a series of tile designs that could be placed on 
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but possibly more three-dimensional. This let to developing a series of tile designs that could be placed on 

the surfaces of a cube. The solid ribbons that were in the print and magnet tiles were recreated as three 
much thinner ribbons. The intersection of the multiple banded ribbons forms a very interesting blending 
and when laser cut and assembled into a cube, give the cube a very light and lacy appearance.  

Figure 15: Tile designs for cube surfaces, diagonal symmetry.

Figure 16: Tile designs for cube surfaces, horizontal and vertical symmetry. 

Figure 17: Tile designs for cube surfaces, terminators. 

Figures 15, 16, and 17 display some of the designs that were developed. All display some symmetry and 
all consist of simple arcs connecting any the three edge points. The last set includes a series of terminators 
for the ribbons. These will in a future study be filled in with color and generated as prints using a random 
selection individual modules and random orientation. 
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Figure 18: Laser cut cubes. 

Figure 18 displays the final assembled laser cut six inch cubes. An overlapping edge was developed so the 
cubes could be easily assembled. The most similar item currently on the market is a block game titled 
Motif Cubes Wooden Block Game, designed by newartifacts, a group of artists and designers from 
Uruguay, South America. These consist of nine 1 3/8 inch painted cubes, Figure 19. Browne also has 
developed a series of games that are based on Truchet-like tilings of all different shapes, three-
dimensional and two-dimensional [20]. 

Figure 19: Motif Cubes. 

These studies begin to demonstrate some of the possibilities of using a modular design element with 
random selection and random orientation to generate repeating patterns that would most likely not 
actually repeat. With the utilization of a digitally driven fabrication system, each piece manufactured 
could be a unique combination of basic elements. In some emerging technologies, such as, large scale 
carpet printers, if the design were to be streamed horizontal row by row, a very large area could be 
manufactured without any repetition. Otherwise, less technical demanding tiling systems such as carpet, 
wall, and ceiling tiles and panels could be economically manufactured while still offering a very great 
variety of unique installations. 
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Abstract 

 
The author will discuss the artistic/mathematical structure of the mandala, it’s brief history, and the procedure for producing a 
mathematically derived example.  
 

Introduction 
 
The beautiful melding of art and mathematical form that we know as the mandala seems to stem 
from pre-history as a desire to find a realm where humans and the sacred could interface. 
 
The question of where to begin the discussion of the Mandala is an interesting one, as the form 
itself suggests a wonderful continuity and the possibility of eternity.  The origin of this structure 
resides in a simple, dimensionless dot in its very center, with mathematical radiations formed by 
triangulation, reflection and rotations - a unit that reflected eternity and all of nature. 
 
This art form is commonly associated with the Buddhist religion and is known as a template for 
deep meditation and spiritual sustenance, a means to connect the divine with the simple world of 
humanity.  The mandala presents as a circular design, arranged in layers and radiating out from 
the center.  The source of the name seems to be derived from the Sanskrit word for essence, 
manda, and the word for container, la.  Thus, we have the container of essence, the great circle 
that through geometric patterning embodies the essence of god and all of nature.  Through 
mathematics and art, comes the perfect prayer. 
 
Looking at the earliest levels of Indian and Indo-European religion (the Rig Veda and its 
associated literature) there is also another math-art connection.  Tapping into the cognitive 
connections of math and music, another source lies in the Vedic ceremonies in which hymns or 
mantras were chanted, perhaps in rounds.  These hymns and chants were thought to have the 
power to create patterns for creatures and natural elements, thus serving as a generative world 
model.  Visual art imagery was added to re-enforce and enhance the effect, embodying 
mathematical patterning in the process.   
 
By 1500 BC a form of mandala was highly developed by Hindus.  The earliest 3-D stupas were 
built in 300-400 BCE by Emperor Ashoka, who undertook the task of building monuments on 
important Buddhist sites; by 800 AD Javanese temple complexes were treasured as architectural 
models of the mandala, and this embodiment of sacred space has carried forward through all of 
time and many traditions. 
 
Today Buddhist monks create sacred mandalas to give home to the presence of the Buddha, and 
as a “blueprint” to connect the peace and continuity of their deity to the supplicant, to connect 
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the universe with man and all of nature.  They study for three years to learn the concepts and 
techniques of math and art necessary to achieve their ultimate creative goal. 
 
Many cultures have incorporated the beauty of the mandala in their practices.  Islamic mosques 
appear as mandalas with a dome, and they use the same art/math to allow thoughts and emotions 
to soar towards Allah.  Navajo Indians create sand paintings, medicine wheels and dream 
catchers with much the same mathematical structure.   Mandala concepts can be seen in Celtic 
knots, often contained in a circular structure and using some of the same mathematical and 
artistic processes in the endless or unbroken line that crosses over itself many times but always 
returns to the original path.  
 
Christian rose windows and the marble floor in such architecture as the Chartes Cathedral put 
art/math to good use in the same mandala patterns. Even in the political geographical realm the 
circle was and still is a way to divide or claim area and extend holdings. 
 
With all of this rich and wonderful history to support the effort, the remainder of this paper will 
look at the procedure and possibilities of creating individual mandalas. 
 

Design 
 
Through this project the participant will be able to explore permutations of a basic design, the 
effect of various color interactions, and possibly create a meditative tool for future use in 
resolving problematic issues of mind or spirit.  Using the components of geometry and the 
devices of repetition, reflection, rotation and proportion, the participant will create an 
aesthetically pleasing design radiating from a center point in the format know as the mandala. 
 

Materials 
 Watercolor paper 
 Tracing paper 
 Paint and drawing tools 

 
Procedure 

 
1. Plan your design.  Consider curves, arcs, coils, circles, spirals, isosceles triangles, 

interconnected lines, and other geometric forms. 
 

Participants will receive a template of a circular form divided into four quarters around a 
center point.  Consider the center of the circle as the point of radiation or rotation.  This 
center should be considered as an energy source from which the design flows.  Lines will 
materialize from the center and will intersect to create geometric or organic patterns. 
 
Start by designing one single quarter of the mandala using the elements of line, repetition 
of form, radial symmetry, reflection, and color interaction.  This will then serve as the 
pattern to complete the entire Mandala.   
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Design interpretations can include any combination of form, line and color. Consider 
repetitions employing reflection, translation and rotation symmetries. Apply gradations in 
scale to introduce proportion. Consider also interconnecting forms.  The forms that you 
use may be symbolic to you, or simply aesthetic choices.  Each quadrant of the design 
will reflect the other three, creating a visual continuity. 
 
If you wish to simulate a traditional Buddhist prayer mandala form, you will include a 
center, which is free of dimension, as the source of energy.  From this center draw a 
circle approximately one third of the way out from the center to represent dynamic 
consciousness.  The circle should be inscribed in a square, which represents the physical 
world.   
 

2. Tape a piece of tracing paper over your completed design and trace it onto the tracing 
paper.  Rotate the tracing paper and repeat this procedure until you have filled all four 
quadrant of the tracing paper.   

 
3. Flip the tracing paper graphite side down and tape it on to your water color paper, being 

careful to line the center point precisely in the middle.  Using your pencil, draw over your 
image again.  This will transfer the graphite onto your watercolor paper. 
 
Remove the tracing paper and check that the image is completely transferred.   
 

4. You are now ready to consider your color choices. You may of course choose any color 
system or perhaps work intuitively.  If you would like some symbolic references, 
consider the following:  
 
In western thinking, energy is often symbolized by the warm colors of reds, yellows and 
oranges.  Greens and blues are psychologically cool colors and can be said to represent 
nature, growth and calm.  White may represent peace, purity or wisdom, while black 
signifies such things as sophistication, death, mourning, or an unknown depth.   
 
In Buddhist thinking, there are specific connotations for each color.  White can represent 
the move from ignorance to the wisdom of reality.  Yellow represents the change of pride 
to the wisdom of sameness.  Red signals attachment becoming discernment, while green 
suggests jealousy turning to accomplishment.  Blue symbolizes the turn from anger to 
wisdom. 

 
Conclusion 

 
The mandala is one of the most ancient of art forms, and has had cultural and spiritual 
significance from pre-historic times to the present.  Some form of it appears in most of the world 
cultures.  This circular form, radiating from a center, has proven to be highly satisfying and 
significant enough to promote extended application and research. The creation of personal 
mandalas have been found to promote relaxation, awakening, mental stimulation and both 
aesthetic and mathematical extensions.  The author has laid out a simple procedure for 
participants to work within the framework created in ancient times. 
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In practical terms this project has been designed to include concepts of radiation, reflection, line 
quality, shape and color interaction.  There is considerable opportunity for playful interaction 
within the format. The artist may choose the application of traditional symbolism or select 
personal interpretation of color and form.  In accepting the discipline of the structure, the artist 
can then guide his or her creative inventiveness. 
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Perceptions of Three 

 
Donna L. Lish 
129 Center St. 

Clinton, N.J. 08809 
E-mail: dlish5@embarqmail.com 

Web: libeado-designs.com 
 
 
                                                                 Abstract 
 
The creative process is an interweaving of the artist’s experiences, intuition, and intellect, which 
altogether impact the art that is generated. The journey is equally as vital as the destination. 
 
Introduction 
 
As an appreciator of the mathematical realm, I was first cognizant of an attraction to the number 3 as it 
pertained to my art making. Besides realizing that many of my sculptural forms consisted of groupings of 
three units, I noted a connection in the actual construction: three beads in patterns, three-stitch increments 
in knitting, and increases of three in crocheting. 
 
The magnetism of three permeated daily practices while preparing to work in my studio. I refined as 
much as possible prior to stitching, immersed in images within the stream of consciousness. This part of 
the ritual was accompanied with stacking rocks in threes, purported to maintain focus for the day. Taller 
monoliths followed, odd-numbered, towered in decreasing sizes. The divine balance was achieved to 
enhance my productivity and calm. 
 
The relevance of my connection with three went on: I have three children, three academic degrees; three 
decades of teaching experience; three seats in my living room, three brooches on each jacket lapel (or odd 
number), and while researching energy and crystal healing, I placed three crystals in each arrangement of 
them. Certain aspects of three have been relevant to the refinement I attain in my art. 
 
In Pythagorean theory, numerical three represents perfect harmony: “the union of unity (one) and 
diversity (two).The symbolism of 3 is linked with the triangle” (O’Connell, p. 208). On the history 
channel (“Ancient Aliens”, April 13, 2011) scientists referred to the  Pythagorean right angle triangle 
resulting from imaginary lines which link  massive rock formations at Carnac, France, the Armenian 
Stone Henge, and the high plateau city of Sicyon (Greece). Theoretically, the formations are believed to 
have mathematical significance which dates to the Stone Age: advanced math clues, a riddle or a sign. 
 
Another reference is the certain frequency in which humans vibrate in three dimensions. At the thirty 
third latitudinal parallel (a double 3) is the ultimate attainment of consciousness (“Ancient Aliens”, 2011). 
In Islamic art, “the 3 symbolizes human consciousness and the principle of harmony”  
(O’Connell, P. 116). “Three is associated with adjectives divine, power, success, prosperity, safety, and 
positivity (O’Connell, p. 500). 
 
Pertinent to magic, three has the empowerment of change. In a mojo bag containing three objects or an 
odd number of them, called gree grees, these charms are selected because “the universe operates on odd 

In practical terms this project has been designed to include concepts of radiation, reflection, line 
quality, shape and color interaction.  There is considerable opportunity for playful interaction 
within the format. The artist may choose the application of traditional symbolism or select 
personal interpretation of color and form.  In accepting the discipline of the structure, the artist 
can then guide his or her creative inventiveness. 
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numbers in order to keep things moving….Three wants to tumble into four, whereas four is solid and 
fixed rather than flowing” (Heaven, p. 38). 
 
The  third phase of the universe  is cited in “Quantum Shift of the Global Brain”, in which “society’s  
evolutionary path is rapidly decided” (Laszlo, p. 30). The areas of environmental and social shifts 
manifest in bifurcations, “the place where systems have two branches or peaks” (Guralnik, p. 139). The 
power of selection at this fork is mirrored in visualization and problem solving as the artist selects which 
alternative will yield superior refinement of form or subject. 
 

  
Figure 1- Splash Ring, 30in.x30in.x5in., 
beaded, netting stitch 

Figure 2- Agitation, 33in.x27in.x 4in., beaded,netting 
stitch 

 
The beauty of three in three-dimensional art is evident in Figure 3 in the reference, “Golightly”, a triple 
twist Mobius (Friedman, Hyperseeing, 8/2007 ), and Figure 5 in the reference, “Bronze Triple”, Mobius 
(Friedman, Hyperseeing, 8/2007 ). An extreme application including properties of three is the four-
dimensional hendecatope where “colored beams represent the edges of triangles….” (Lanier, p.28). (In 
the fourth dimension each side is 3-D, the principles of which are challenging to identify, especially in 
diagram form on a two-dimensional page). As complex as this construction may seem, it is still imbued 
with aesthetic options for interpretation in the eyes of this sculptor. 
 

  
Figure 3, Beaded Curvature, 11in.x10in.x3in., 
beaded, netting stitch 

Figure 4, triangle dye ribbon strip, crocheted mylar 

 
The concept, as well as the reference to the tetrahedron (three-sided pyramid) has possibilities in 
consolidating with triangle needlework to achieve variations in surface pattern and positive and negative 
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Figure 3, Beaded Curvature, 11in.x10in.x3in., 
beaded, netting stitch 

Figure 4, triangle dye ribbon strip, crocheted mylar 

 
The concept, as well as the reference to the tetrahedron (three-sided pyramid) has possibilities in 
consolidating with triangle needlework to achieve variations in surface pattern and positive and negative 

curvature of hyperbolic planes. This application requires experimenting to envision models of 
fundamental architecture, a dynamic concoction of stitches and materials in impressive scale. This is my 
obsession. 
 

  
Figure 5- Steel Curves, 12in.x12in.x3in., knitted 
steel wire 

Figure 6- Perpetual Meander, 8in.x10in.x10in., 
rubber, crocheted 

 
I was attracted to artists’ applications of curvature. In Irene Rousseau’s “Art as Metaphor for the Fourth 
Dimension”, she features two “hyperbolic mosaic sculptures which symbolically represent the concept of 
infinity” (Rousseau, Hyperseeing, Spring, 2009). My notes on her presentation are: concepts of infinity in 
negative curvature; interpretation of infinite structures within boundaries recognize the circle as the outer 
edge of those limits. My studies on this configuration are seen in Figures 1-3.  
 

  
Figure 7- Black-White+, 10in.x10in.x8in., rubber, 
crocheted 

Figure 8- Curvature,12in.x12in.x8in., stainless 
steel, crocheted 
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In “Triangle-Strip Knitting”, James Mallos writes the strategies of using algorithms to enhance accuracy 
of knitting or crocheting units for 3-dimensional shapes. My focus is the crocheted continuity of strips of 
triangles, loosely following the information in his paper. Figure 4 is an ongoing strip. Triangles can be 
stitched together to achieve curvature in 3 dimensions. Pursuant to instruction, I crocheted the first 
triangle, then slip-crocheted back down the last side to proceed to each additional triangle in the strip. The 
orderly repetition enabled me to complete multiples and to maintain size uniformity and color variations 
using dye sublimation ribbon, a recycled light, yet rigid material. Presently, these works are limited to use 
indoors though massive in scale. 
 
 

   
Figure 9, Hyperbolic Plane, 3in.x3in.x3in., 
retroglo reflective fiber 

Figure 10- Third Eye, synthetics, metallics,glass, crocheted 
Figure 11- Third Eye (detail), 12in.x12in.x4in., synthetics, 
metallics, glass, crocheted 

 
Daina Taimina’s crocheted models of hyperbolic planes were the necessary elements of research to 
integrate within my schema. Surface ruffles were reminiscent of the mnemonic capacities embedded in 
brain folds. My objective is a universal visual language- to view and unravel the mysteries, through 
consultation of one’s own memory, human’s limited physiology. These images of infinite expanses led to 
using novel materials like rubber and steel in my own departures, seen in Figures 5-12. Each study is 
based on increments of 3 stitches- increases and single crochets. Expansive diversions await rendering as 
this preliminary undertaking unfolds. 
 
Coalescence of all resources has enriched and refined the direction of the journey. The work portrayed in 
the figures represents cosmic ideation of preliminary impressions. Until the work is assembled, it is 
merely a thought, an essence limited to the language that can clarify the initial spark. Until that idea is 
acted upon, memory of it is invisible and must be transformed in order to be physically represented. It is 
the sole power of the artist to perform this extraordinary translation. 
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Figure 12- Three curves, 6in.x6in.x4in. (largest), wool, hemp, crocheted 
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                                  Perceptions of Three 
                                           Workshop 
 
 
                                                               Donna L. Lish  
                                                          129 Center St. 
                                                       Clinton, NJ 08809 
                                                Web: libeado-designs.com  
                                            Email: dlish5@embarqmail.com  
 
                 
                                                           Description 
 
 
 
Estimated Length: 1-1 ½ hours (modified to available time) 
Materials provided by the instructor 
 
 
In this workshop I will introduce two models of construction of forms: “paper doll” 
triangle strips, and varied triangle multiples to implement and affix in experimental 3-D 
configurations. From these maquettes, participants will select an appealing sample to 
expand into a balanced, sturdy sculpture, of approximately shoe box size. Diverse papers 
(printed and solid), nontoxic adhesives, joining elements, scissors and other tools will be 
provided. Problem solving skills will be implemented.   
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Octoids: Sculpting Between Octahedron and Sphere 

 
Stephen Luecking 

 
School of Computer Science and Digital Media 

DePaul University 
sluecking@cs.depaul.edu 

 
The edges of an octahedron inscribed in a sphere will project as arcs dividing the sphere into quadrants. Flattening one or more of 
these arcs onto the corresponding edges of the octahedron causes the affected quadrants to lose their double curvature and 
reduces their surfaces to conical, cylindrical and planar surfaces. The sculptor dubs the figures thus created as octoids and cites 
approximately 143 possible variations that his sculptures might take. He also offers methods for the efficient manufacture of 
these sculptures. 

 
Introduction 

 
The octahedron inscribes in a sphere, and its edges project onto the sphere as orthogonal great circles that 
divide the sphere into quadrants. The sphere may then be seen as an octagon all of whose edges comprise 
90 arcs and whose faces have swelled tangent to one another and doubly curved. Have only select edges 
of the octahedron round into these quarter arcs, and portions of the expanded octagon (or octoid by the 
sculptor’s parlance) and its surface will take on the conical, cylindrical and planar features determined by 
the combinations of straight and curved edges. The solid figures this generates offer considerable interest 
as sculptures. Further the sculptures are then amenable to combinatorial fabrication in which each octoid 
forms from eight modules in various combinations of spherical, conical, cylindrical or planar surfaces.  
 

Inflating an Octahedron 
 
To create an octoid from an octagon (Figure 1a) selectively inflate an edge or edges into 90 arcs and treat 
these as bounding curves of new surfaces to supplant the original faces.  
 
Figure 1b depicts an octagon with one edge inflated. The two adjacent faces sharing that edge now meet 
on the arc so that each curves into a conical surface. Similarly Figure 1c has had two meeting edges 
inflated. Subsequently the face bounded by the two arcs and the straight base of the triangular face rounds 
into a cylinder, while the two faces adjacent at the arcs grow into conical surfaces. In Figure 1d all three 
edges of a single face have arced outward forming that face into a spherical segment and the three 
adjacent faces into quarter cones. 
 
 

     
              

Figure 1. a) inscribed octagon b) one edge inflated c) two meeting edges inflated d) all edges of one face inlated. 
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Deflating a Sphere 
 
To create an octoid from a sphere (Figure 2a) selectively deflate a quadrant arc or arcs into 90 chords 
corresponding to the edges of an inscribed octagon. 
 
Figure 2b features a single arc deflated into the edge of the inscribed octahedron to create adjacent 
cylindrical surfaces. Figure 2c deflates two meeting arcs into the corresponding edges of the inscribed 
octahedron to yield a cone segment flanked by two cylinder segments. With all of the arcs of a single 
quadrant deflated the sphere quadrant deflates into a triangular face with the adjacent quadrants transform 
into cylinder segments. 
 

     
 

Figure 2. a) circumscribed sphere b) one surface arc deflated c) two surface arcs deflated d) three surface arcs deflated. 
 

Fabricating an Octoid Sculpture 
 

Three orthogonal intersecting disks may serve as the armature for a sphere (Figure 3). Modifying those 
disks by cropping them at their quadrant chords can result in five additional sections (Figure 4) for 
creating the orthogonal armatures of any potential octoid. The sculptor cut these from thin plywood, then 
slotted them to intersect in order to then tightly glue them together into an armature (Figure 5). 
 
 

        
 
Figure 3. Armature for a sphere. Figure 4. Armature sections for creating octoids. Figure 5. Assembled octoid armature. 
 
 
The sculptor drew schematics for the potential configurations of octoids (Figure 6) and followed these for 
fitting pre-cut plywood sections into armatures. To date 72 of the possible armatures have been assembled 
and filled using an alkyd-based spackling compound applied in thin layers. After smoothly sanding the 
spackle, then priming and re-sanding to a porcelain-like finish, the sculptures were ready for the final 
finish of a metallic lacquer. To date 24 have reached the finished stage (see gallery below). 
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Figure 6. Sample schematics for octoid layout. Dark lines represent the configuration of collapsed edges of the octoid. 
 
 

Octoid Gallery 
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Abstract 

 
Colors in computer graphics may be selected and printed with precision by applying the RGB and HSL color models that are 
standard in PC operating systems. We access these models through MS Word and apply the numerical coding used by 
programmers to identify and mix colors in common visual relationships. 

 
Introduction 

 
Most graphic programs have color-selecting tool that are typically used intuitively by artists, often 
employing a slider controlled with the mouse. To refine their color choice the artists may resort to 
numerically adjusting the color. Graphics programs usually have an interface of numbers specifying 
percentages between 1 and 100 that is easily understood by the average user. Both of these tools, the 
slider and the percentage adjuster are programmed using the RGB color model included in the operating 
system. This same model is readily accessible in its basic form through most common office programs 
that have some minor graphic capabilities, such as Microsoft Word or PowerPoint. This workshop 
accesses that model and introduces methods within such programs for selecting and mixing colors with a 
precision at the limits of human vision. 
 

Color Models 
 
A color model is any system for numerically specifying color, especially within a computer environment. 
There are several of these depending on the use demanded of the model. However, all are built over the 
RGB model, which is present in all operating systems. 
 
The RGB primaries are red, green and blue, so that the model specifies color based on the amount of each 
primary present in a color. The model designates these amounts from a low of 0 to a high of 255. This is a 
total of 256 or 28, otherwise known as 8 bits, for each of the three primaries. There are then a total of 8 
bits each of red or green or blue in a color. This means that the total number of possible colors that may 
be designated is 256 x 256 x 256 or 28 x 28 x 28, or 224 , 24 bits of color. This number, is double that 
perceivable to the average human and only perceivable to a few trained colorists. Thus 24 bit color is 
considered full color. 
 
These 17,000,000+ colors can array according to three axes of red, green and blue that are set orthogonal 
like the X, Y and Z axes of a standard orthogonal grid. Consequently the “color space” of the RGB model 
fits into a cube (Figures 1 and 2). The model denotes the position of each color in that space by a scale of 
0 to 255 along each axis. Thus this model – and all color models – requires three values, or coordinates, to 
specify a color. In RGB the three coordinates are values between 0 and 255, including the achromatic 
colors between black and white. RGB color is additive, meaning that a full complement of all three 
primaries  (255,255,255) produces white. A lack of all of these, or 0,0,0, indicates black. Any triplet of 
values that are all the same number will lie on the grayscale since no one primary dominates. 
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A model very closely related to RGB is CMY, which uses the primaries cyan, magenta and yellow. This 
model is subtractive, meaning that a full complement of the primaries yields black. It is meant to replicate 
the mixing of colors with filters. Figures 3 and 4 illustrate the CMY color space. The triple 0,0,0 
enumerates white and the triple 255,255,255 enumerates black, exactly the opposite of RGB. 
Sophisticated graphics programs also supply the CMYK model, where K indicates black. This model 
imitates mixing with inks, where black ensures the accurate printing of very dark colors. Although inks 
and paints mix color subtractively, there are no pigments pure enough to produce a black when mixed. 
Without K the darkest color is a deep, slightly muddy gray.  
 

    
 

Figure 1. RGB color axes.      Figure 2.  RGB color space. 
 

    
 

Figure 3. CMY color axes.                                                        Figure 4. CMY color space.  
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Mixing Color in RGB 
 
To mix colors in the RGB model from older Word programs click on the paint can at the bottom of the 
screen after selecting the desired shape. To find the paint bucket in newer versions of Word click on the 
Drawing Tools tab that appears at the top of the screen upon selecting the shape. Click on “More Fill 
Colors” and then on “Custom” tab in Colors window. This opens access to RGB. 
 

   
 

Figure 5. Standard Colors window.     Figure 6. Custom Colors window. 
 
To create a pure red enter 255 at Red and 0 at Green and 0 at Blue for a value triplet of 255,0,0. This 
ensures that red will not be changed by the inclusion of another primary. The same holds true for the other 
two primaries: the triplet for green is 0,255,0 and that for blue is 0,0,255 (Figure 5). Since 255 is the 
highest value, then lowering that value toward 0 while maintaining the other three values at 0 will darken, 
or shade, the primary color toward black.  
 

        
 
Figure 7. Red, green and blue placed on the color wheel.       Figure 8. Cyan, magenta and yellow added to the color wheel. 
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The secondary colors in RGB are cyan, magenta and yellow. On the color wheel above each lies midway 
between the primaries used to mix them. Thus cyan falls between green and blue; magenta falls between 
blue and red; and yellow falls between red and green. Note that this differs significantly from paint 
mixing. A pure secondary demands two pure primaries so that the triplet for a secondary color has two 
values at 255 and one at 0. Thus yellow has R and G values of 255, but a B value of 0. Raising the value 
for B while keeping the R and G values at 255 will cause the color to lighten, or tint, toward white as the 
triplet approaches 255,255,255. Blue, then, is the complement of yellow, since its addition to yellow 
creates white. Similarly red is the complement of cyan (0,255,255), and green is the complement of 
magenta (255,0,255). 

          
Figure 9. The RGB and CMY, or physical color wheel.       Figure 10. The RYB, or artist’s color wheel. 

 
Finding the complement of a given hue requires the simple procedure of subtracting the triplet for the 
given hue from the triplet for white. Thus the complement for the hue 255,17, 0 is 0, 238,255. 
 
 
 
 
 
 
 
  

Figure 11. Calculating an RGB complementary pair.  
 
Mixing the six tertiary colors will fill out the color wheel. The tertiary colors are a mix between a 
secondary color and a primary color. Between red and green are the tertiary colors orange (255, 128,0) 
and yellow green (128,255,0). Since orange is more red than green the red remains at its full strength of 
255, but green is reduced by half to 128. Similarly, cyan green is 0, 255, 128 since green dominates over 
blue. Note that red becomes 0. Filling out the color wheel: cyan blue = 0,128, 255, magenta blue = 128,0, 
255 and magenta red = 255,0,128. 
 
The color wheel may not look like that normally used by painters, where the primaries are RYB, red, 
yellow and blue. The RGB and CMY color wheels (which appear the same as one another) are physical 
models of hue relationships. The RYB color wheel is a good guide for mixing with artists’ paints. Since it 
contains a broader range yellow, it also corresponds to the range of colors most distinguishable by the 
human eye.  
 

255 255  255 
255    17      0 
 
  0    238  255 
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yellow and blue. The RGB and CMY color wheels (which appear the same as one another) are physical 
models of hue relationships. The RYB color wheel is a good guide for mixing with artists’ paints. Since it 
contains a broader range yellow, it also corresponds to the range of colors most distinguishable by the 
human eye.  
 

255 255  255 
255    17      0 
 
  0    238  255 

Mixing Color in HSL 
 
In the Custom tab of Word’s Colors window is a second model based on hue, saturation and luminosity: 
the HSL model. Note that, like RGB, HSL has three dimensions, which are based on other aspects of 
color rather than the three primaries.The HSL model has 256 different hues beginning at 0 for red and 
then circling the color wheel and returning almost to red again at 255. Saturation is a measure of the hue 
in a color, lowering as it fades toward the achromatic scale of white, grays and black. Since a pure hue 
has maximum saturation its S value is 255, while the S value of all 256 colors on the achromatic scale is 
0. Luminosity measures the lightness or darkness of a color. For this reason the L value of each pure hue 
is automatically set at 128. As a color lightens its luminosity rises toward 255; as it darkens it descends 
toward 0. 

          
Figure 12. Pure hue and achromatic scale on the hue triangle.                    Figure 13. HSL color space/ 
 
The clearest demonstration of the HSL model is the mixing of a hue triangle. This triangle has rotated 
sideways so that its base is vertical and its apex points to the side. It features a pure hue at its apex and an 
achromatic scale along its upturned base. The colors on this scale move from maximum saturation as they 
move from the pure hue to the achromatic scale. At the same time, they spread toward white and black.  
 
Choose a pure hue, specifying its H value and setting the S value to 255 and the L value to 128. The 
triplet for blue magenta in the apex of the triangle in Figure 12 is 192, 255, 128 in HSL. 

 
Mixing a gray scale: to create a middle gray lower S to 0 and keep L at 128 for a triplet of 192,0,128. 
Since there is no hue in the gray scale any H value will work. In this case the H value is just a 
placeholder, so it is included in the triplet for gray. In order to create white and black keep S at 0 and 
move L to 255 and 0, respectively. White will equal 192,0,255 and black will equal 192,0,0; light gray 
will equal 192,0,192, or mid way between the L values for white and gray, similarly dark gray will equal 
192,0,64. 
 
The upper side of the triangle is tinted toward white. Mix the tints of a hue in the scale by raising the L 
value incrementally from 128 to 255. There are four steps so each increment is ¼ of 128, or 32. The 
descending side of the triangle is shaded toward black. Mix the shades of a hue in the scale by lowering 
the L value incrementally from 128 to 0. There are four steps so each increment is 32. There are three 
tones in this scale. These are: the mid tone (192,128,128) a high tone (192,64,160) and a low tone 
(192,64, 96). The mid-tone lies halfway between the pure hue and the middle gray. To mix simply halve 
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the S value to 128. The high and low tones on this scale are in a row of 25% saturation with S values of 
64, or ¼ of 256. In this row the top color has an L of 224 and the bottom color has an L of 32 for a 
difference of 192 to yield increments of 64 between the four colors. 
 
Often a hue triangle is paired with its complement so that the two hue triangles are mirrored into a 
horizontal diamond. The difference between two complementary hues in HSL is 128, or ½ of 256. In this 
case the H value is 192 – 128, or 64. Mix this hue on the right apex of the scale in Figure 14. Finish out 
the right triangle by using the same SL values as the left triangle and a consistent H value throughout. 
Note that in this scale, all colors on the same horizontal row have the same luminosity value. Those in the 
same vertical column have the same saturation value (Figure 14). 
 
A set of all 256 hue triangles sharing the same gray scale will yield the HSL color space, which is a 
double cone depicted in Figure 13. 
 

 
 

Figure 14. Scale of complements. 
 

Middle Mixtures and Transparency 
 
Often color harmonies are based on a scale mixed between two key colors of the composition. The scale 
for the example in Figure 15 has as its endpoints two key colors plus the gradation between them. The 
three colors inside this scale are called middle mixtures. The two colors were selected for their contrast. A 
check on the HSL triplet for the green reveals it to be 57, 255, 179. Its RGB triplet is 204,255,102. The 
orange has an HSL value of 21,255,102. It has an RGB value of 205,102,0.  
 
At the center of Figure 15 below is the table of calculations for the differences between the numerical 
codes of the two colors as determined under both the HSL and RGB models. The differences are then 
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Middle Mixtures and Transparency 
 
Often color harmonies are based on a scale mixed between two key colors of the composition. The scale 
for the example in Figure 15 has as its endpoints two key colors plus the gradation between them. The 
three colors inside this scale are called middle mixtures. The two colors were selected for their contrast. A 
check on the HSL triplet for the green reveals it to be 57, 255, 179. Its RGB triplet is 204,255,102. The 
orange has an HSL value of 21,255,102. It has an RGB value of 205,102,0.  
 
At the center of Figure 15 below is the table of calculations for the differences between the numerical 
codes of the two colors as determined under both the HSL and RGB models. The differences are then 

divided by 4 to determine the increments in each value. In this case H differs by increments of 9 (36 
divided by 4), S will not differ, and L differs in increments of 19 (77 divided by 4). In the case of the 
RGB values the increments of change will be 0 for R, 38 for G and 25 for B. 
 
Flanking this table are the scales of gradients containing the middle mixtures produced by both models. 
The RGB coding is perceptually accurate while that produced by HSL coding is not. HSL is ineffective 
for the straight-line mixing between two arbitrary colors, while RGB is excellent. The HSL model is good 
for selecting color or for mixing within a single hue. RGB is good for mixing between two given colors. 
 

              
Figure 15. Middle mixing in HSL and RGB 

 
Artists employ middle mixtures in order to create transparency effects. The samples in Figure 16 use each 
of the three middle mixtures to color the area of intersection of two shapes of the original colors. Each 
produces a transparency: one where the green is forward, one where the two shapes lie on the same plane 
and one where the orange is forward.   
 

 
 

Figure 16. Transparencies created with the three middle mixtures on the RGB scale in Figure 16. 
 

Figure 17 has added middle mixing between the original green and orange colors and the white of the 
paper. The triplet for the green when averaged with white (255,255,255) becomes 230,255,179; the 
orange becomes 230,179,128. The area of intercept, however, remains the same as in Figure 16. Note how 
in Figure 17 the middle transparency creates an additive effect and strongly conveys the feel of two 
translucent tissues overlaid on a white surface. 
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Figure 17. Transparencies featuring middle mixtures with the background color. 
 

Conclusion 
 

Operating systems incorporate two complementary color models. The HSL model is excellent for color 
selection or mixing a single color. Artists familiar with hue, saturation and luminosity can modify color 
by raising or lowering the numerical values for each dimension until the color visually matches the color 
sought by the artist. However, once colors are chosen mixing between the colors becomes the task of the 
RGB model. 
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Figure 17. Transparencies featuring middle mixtures with the background color. 
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Operating systems incorporate two complementary color models. The HSL model is excellent for color 
selection or mixing a single color. Artists familiar with hue, saturation and luminosity can modify color 
by raising or lowering the numerical values for each dimension until the color visually matches the color 
sought by the artist. However, once colors are chosen mixing between the colors becomes the task of the 
RGB model. 
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Abstract 

 
Double curved surfaces such as a sphere or, in the case of this paper, a hyperbolic paraboloid are problematic to create from 
paper, a material more amenable to developable surfaces. However, one can break a double curved surface into polygonal facets 
that do an acceptable job of visually approximating that surface. By this means one can unfold the polygonal surface structure 
into a flat pattern that may be printed, cut and scored, and then folded into the desired surface. In this case the surface to build is 
the Scherk periodic minimal surface. 
 

Introduction 

A hyperbolic paraboloid (hypar) module in the proper configuration offers some intriguing possibilities 
for deploying saddles in space in order to tile periodic minimal surfaces. One especially elegant tiling 
scheme derives from the structural geometry presented by Peter Pearce in his book Structure in Nature Is 

a Strategy for Design. Pearce 
presents the case where the 90º 
regular saddle hexagon and the 
60º regular saddle rhombus can 
tile space to form a continuous 
system of tubular surfaces. As it 
turns out either of these three-
dimensional polygons will tile to 
form the Scherk periodic 
minimal surface (Figure 1). 
Pearce notes that both of these 
saddle polygons subdivide into 
identical hypar surface patches 
in the form of a kite. 
Consequently this patch serves 
as the single, common module 
for building Scherk’s surface. In 
order to craft this module from 
paper the builder must first 
triangulate the kite’s surface and 
then unfold the triangular faces 
into a 2D pattern. 

 

 

Figure 1. Scherk periodic minimal surface. 
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Figures 2 and 3. Creating the 90º saddle hexagon and the 60º saddle quadrilateral from the cube. 
 

Saddle Polygons 

Pearce derives a host of saddle polygons by extracting their edges from a dense grid of all possible cubic 
symmetries that he terms the Universal Node System, a grid matrix of cubes whose interiors and faces are 
traversed by their diagonals. A more direct method for constructing these two saddles exploits the 
relationship each bears to the cube. Edging the saddle hexagon is a transit of six edges on the cube, 
splitting the cube in half; edging the saddle rhombus is a transit of four diagonals of the cube also splitting 
the cube in half (Figure 2). In each case half of the faces of the cube are removed to reveal edges of the 
respective polygons. With the addition of the armature of mid-edge diagonals as shown in Figure 2 the 
stage is set for building the saddles from a circuit of hypar surface patches in the form of a kite (Figure 3). 
It turns out that the kites for both saddle polygons are congruent, allowing the 60º regular saddle rhombus 
and the 90º regular saddle hexagon to intersect by their identical kites (Figure 4). 

       
Figure 4. In both saddle polygons the mid-edge diagonals divide the surfaces into the same hypar kite.  Figure 5. Scherk 
surface tiled with the 90º saddle hexagon.  Figure 6. Scherk surface tiled with the 60º saddle quadrilateral. 
 
With a little experimentation the possibilities for three-dimensional tiling of these saddle polygons 
become apparent. Either polygonal surface repeats to generate a continuously curving surface, which 
develops into tubular foam that displays some elegant symmetries (Figures 5 and 6). 
 

Module Design 
 
For the purposes of tiling only a single module, the shared hypar kite alone, suffices. By triangulating the 
hypar kite it is possible to build physical representations of these surfaces from folded paper modules 
(Figure 7). The simplest such triangulation uses four triangles such that each triangle has as its base one 
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Figures 2 and 3. Creating the 90º saddle hexagon and the 60º saddle quadrilateral from the cube. 
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Figure 4. In both saddle polygons the mid-edge diagonals divide the surfaces into the same hypar kite.  Figure 5. Scherk 
surface tiled with the 90º saddle hexagon.  Figure 6. Scherk surface tiled with the 60º saddle quadrilateral. 
 
With a little experimentation the possibilities for three-dimensional tiling of these saddle polygons 
become apparent. Either polygonal surface repeats to generate a continuously curving surface, which 
develops into tubular foam that displays some elegant symmetries (Figures 5 and 6). 
 

Module Design 
 
For the purposes of tiling only a single module, the shared hypar kite alone, suffices. By triangulating the 
hypar kite it is possible to build physical representations of these surfaces from folded paper modules 
(Figure 7). The simplest such triangulation uses four triangles such that each triangle has as its base one 

side of the kite and as its apex the saddle point of the hypar located at the intersection of the hypar's mid-
edge diagonals (Figure 8).  

               
Figure 7. Triangulated periodic surface.                                               Figure 8. Triangulated kite. 

Six kites orienting their curvature in alternating up-and-down directions and glued in a radial pattern by 
their long edges yields the 90º regular saddle hexagon, while four kites joined about a center by their 
short edges produces the 60º regular saddle rhombus (Figure 9). Thus the two polygons intersect by the 
same kite (Figure 10).  

Based on figure 10 it is apparent that four 90º hexagons will tile around a common point, and that six 60º 
rhombuses will tile around a common point, to produce the same surface. 

               

Figure 9. 90º regular saddle hexagon and 60º regular saddle rhombus triangulated from kites. Figure 10. Overlap of these 
polygons as a kite. 

 

Figure 11a is a portion of the Scherk periodic surface constructed from these kites. Figure 11b reveals the 
same surface with one of its 90º hexagons outlined. The hexagon works as a kind of architrave at the 
juncture of a Scherk surface’s tubes. The 60º rhombus, on the other hand, wraps around the tubes (Figure 
11c). These figures also reveal that at each juncture four tubes meet with four hexagonal architraves 
bridging between them in tetrahedral symmetry (Figure 12). The angles of intersection correspond to the 
intersecting edges of packed rhombic dodecahedrons. 
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Figure 11a. A view of the paper Scherk surface through one of its hollows.  Figure 11b.  The 90º regular saddle hexagon 
on the Scherk surface.  Figure 11c. The 60º regular saddle rhombus on the Scherk surface. 

                         
Figure 14 diagrams the pattern 
for folding and assembling the 
kites. There are two patterns, 
one the mirror of the other. 
Trial and error proved that, 
since any two adjacent kites are 
flipped relative to one another, 
mirroring the patterns aided 
assembly.  

The kites hinge together with 
folded rhombuses keyed to the 
length of their edges. The 
rhombuses in turn generate a 
highly symmetric decorative 

pattern across the surface and 
transform what might have 
been a distractive joining into 
an enhancement of the surface. 

 

 

 
 

Figure 12.  Center of a 
tetrahedron connectedto its 
vertices. 

Figure 13. Tetrahedral junction of  rhombic 
dodecdahedrons. 

 
Figure 14. Patterns for the triangulated hypar kite and the rhombic connecting 
tabs. 



105

      

Figure 11a. A view of the paper Scherk surface through one of its hollows.  Figure 11b.  The 90º regular saddle hexagon 
on the Scherk surface.  Figure 11c. The 60º regular saddle rhombus on the Scherk surface. 

                         
Figure 14 diagrams the pattern 
for folding and assembling the 
kites. There are two patterns, 
one the mirror of the other. 
Trial and error proved that, 
since any two adjacent kites are 
flipped relative to one another, 
mirroring the patterns aided 
assembly.  

The kites hinge together with 
folded rhombuses keyed to the 
length of their edges. The 
rhombuses in turn generate a 
highly symmetric decorative 

pattern across the surface and 
transform what might have 
been a distractive joining into 
an enhancement of the surface. 

 

 

 
 

Figure 12.  Center of a 
tetrahedron connectedto its 
vertices. 

Figure 13. Tetrahedral junction of  rhombic 
dodecdahedrons. 

 
Figure 14. Patterns for the triangulated hypar kite and the rhombic connecting 
tabs. 

 
Sculpture From a Space Filling Saddle Pentahedron 

 
Stephen Luecking 

School of Computer Science,  
Telecommunications and Information Systems 

DePaul University 
Email: sluecking@cs.depaul.edu 

 
Abstract 

A variety of polyhedrons whose edges are non-planar may be bounded by minimal saddle surfaces. By virtue of their saddle 
formation these surfaces can mate and, in cases where the polyhedron’s edges derive from a cubic lattice, they may pack space. 
One such space packing polyhedron possesses five saddles and is thus dubbed a pentahedron. The subject of this paper is a 
pentahedron, which will pack space along the course of a Scherk periodic minimal surface. The pentahedron may then be utilized 
as a module for constructing sculptures comprising minimal surfaces of simple and complex saddles. This paper demonstrates 
sculptural studies built from paper constructions of this pentahedron. 

 
Introduction 

Peter Pearce in his book Structure in Nature Is a Strategy for Design offers a host of space filling 
polyhedrons, whose edges are straight, but whose “faces” are saddle surfaces. Pearce derives these by 
extracting their edges from a dense grid of all possible cubic symmetries that he terms the Universal Node 
System, a grid matrix of cubes whose interiors and faces are traversed by their diagonals. Part and parcel 
of their space-filling property comes the option of assembling these as modules to create more complex 
sculptural forms. The saddle polyhedron under consideration here is a pentahedron all of whose surfaces 
are hyperbolic paraboloids, or hypars.  

Of key interest is the one face that is a 60º regular saddle rhombus. This surface bears the capability of 
tiling the periodic version of the Scherk minimal surface (Figure 1). This surface divides the 3D space it 
occupies into two complex halves, one of which may be filled while the other remains empty. This creates 
sculptural interest by virtue of the dichotomy between strongly formed volumes and their complementary 
masses. If the pentahedrons pack such that the 60º regular saddle rhombuses all remain open, then the 
packed space will comprise equal regions of mass and volume, bordered by the Scherk surface. 

This paper surveys the creation of the saddle polyhedron required to effect such a space and the sculptural 
possibilities it offers. 
 

The Pentahedral Module 

Figure 2 displays three views of a digital model of the pentahedron. The third view reveals its essentially 
cubic symmetry. Four of the surfaces of this figure, all hypars, flank the sides of the 60º regular saddle 
rhombus that constitutes the fifth face of this polyhedron.  

Figure 3 demonstrates the joining of two pentahedrons by matching the flanking surfaces and leaving 
their saddle rhombuses exposed. Note that this joining creates a continuous surface tiled from the 
rhombuses. 
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Figure 4 portrays an alternate joining by matching the pentahedrons by the 60º regular saddle rhombuses. 
The figure that results is the regular saddle tetrahedron. This figure will pack space as in Figure 5. The 
pentahedron will pack space by virtue of its ability to join to form the saddle tetrahedron. This is the basis 
for the pentahedron’s ability to serve as a module for creating sculpture. 

 

Figure 1. Scherk periodic minimal surface. 

        

 

Figure 2. Three views of the saddle pentahedron. 
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Figure 3. Two pentahedrons joining at their flanks. 

 

        

Figure 4. Two pentahedrons joining into a saddle tetrahedron. 

                    

Figure 5. Packing the regular saddle tetrahedron. Figure 6. Triangulated paperboard models of the pentahedron. 
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Sculptures from Pentahedrons 
 
A triangulated model of the pentahedron (Figure 6) displays the same joining properties as does its fully 
curved counterpart (Figure 7 and 8). All of the sculptures comprise six of the pentahedron modules in 
symmetrical arrays. Each portrays a different segment of the Scherk surface. Figure 9 depicts two 
positions of the sculpture Claw. This construction forms the segment of the Scherk surface at the juncture 
of three of its “tubes”.  (The periodic version of the Scherk surface may be imagined as a network of 
tubes, such that the four tubes meet at each juncture in tetrahedral symmetry.) 

 

     

Figure 7. Two pentahedrons joined at the flank. Figure 8. Two pentahedrons joined at the 60º regular saddle rhombuses. 
 

     

Figure 9. Claw, positions 1 and 2, paperboard, 2010. 
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positions of the sculpture Claw. This construction forms the segment of the Scherk surface at the juncture 
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Figure 7. Two pentahedrons joined at the flank. Figure 8. Two pentahedrons joined at the 60º regular saddle rhombuses. 
 

     

Figure 9. Claw, positions 1 and 2, paperboard, 2010. 

 

Claw presents the meeting of three half tubes and the architrave that provides continuity between the 
tubes. Repeating Claw four times and joining all four copies will form the juncture of all four tubes.  

As seen in Claw, six pentahedrons proved sufficient to create a formally intriguing sulpture. Figure 10 
displays a study for the sculpture Star Torus, also comprising six pentahedrons in a similarly intriguing 
sculpture. Star’s inner surface is the band surrounding the girth of one of the tubes. This surface matches 
the torus segment on the outer surface of the study for Rotator in Figure 11. Both sculptures present 
identical segments of the Scherk surface. They differ in that the space each packs is on opposite sides of 
that surface. 

     

Figure 11. Star Torus, paperboard, 2010.    Figure 12. Rotator, paperboard, 2011 
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Abstract

A map operation  converts one mathematical model of a surface into  another, and can thereby suggest to the artist  or 
artisan different  ways of building or decorating a given surface. A truchet tile technique is presented that allows 
many common map operations to be represented by truchet tiles of triangular shape. These map operations can also 
be defined pictorially by their action on a monogon embedded in the sphere. Truchet tiles  for twenty-one map 
operations are illustrated along with examples of their use in the design of weaving and tensegrity structures.

Introduction

Familiarity with map operations can spark the visual imagination. For example, it  might  be surprising that 
a map with all triangular faces (think of the edges of an icosahedron projected onto the sphere) can be 
trivially converted into a map with all quadrilateral faces, or into one with all pentagonal faces, or into a 
design for a weaving, or into a design for a tensegrity structure. Seemingly alchemical changes like these 
are effected by map operations. The operations themselves are quite simple, so simple that many can be 
represented visually by truchet tiles; that is, by specially patterned tiles designed to fit  together, side-by-
side, to help visualize a larger pattern. This article illustrates truchet  tiles for many map operations and 
gives some examples of their practical use.

Figure 1: Which of these are maps? Only b, c, and f.

b

c

d

e

f

ga
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Definition of a Map. Abstracting the definition of a map given in [1]:

A map is a graph drawn on a closed surface in such a way that:

a) the vertices are represented as distinct points on the surface,
b) the edges are represented as curves on the surface intersecting only at the vertices,
c) if we cut the surface along the graph, what remains is a disjoint union of connected components, 

called faces, each topologically equivalent to an open disk.

Examples: a monogon (i.e., a single vertex with a self-loop) is a map when drawn on the sphere; on the 
torus it can be drawn several different  ways, but none succeeds in being a map because one of the faces 
will fail to be a topological disk. The skeleton graph of a tetrahedron is a map when drawn on the sphere 
without  crossings—and also a map if drawn on the torus in a particular way (see Figure 1.) In computer 
science terms: if a graph encodes the topology of the surface it is drawn on, then it's a map.

A practical use of maps is to mathematically describe a surface we are interested in making or decorating.

Map Operations. Map operations are procedures that convert one map into another [2-3]. Map 
operations are known under various guises in different fields, most  notably in Conway's polyhedron 
notation [4], in computer graphics, where they appear as various subdivision schemes [5-8], and in 
geodesic dome design, where they appear as various geodesic breakdown schemes [9].

Many map operations can operate indiscriminately on map faces that  are monogons, digons, or n-gons. 
Many map operations (namely, the achiral ones) work just  as well on surfaces that  are orientable and 
nonorientable, and surfaces of any topological genus. This wide scope of application is why we should 
indeed prefer to speak of maps, not limiting ourselves to polyhedra or computer graphics surface models.

Some map operations are fundamental: identity, dual, and reflect are of first importance (reflect [4], 
unfortunately, is one that cannot be accomplished with truchet tiles.) 

Some map operations are composite, meaning that  they can be accomplished by performing a sequence of 
other map operations in a specified order (note that map operations are not  generally commutative.) But, 
since truchet  tiles cannot compose map operations—nor can the visual imagination do this very easily—
some composite map operations are presented here.

Names and Notation. I have strayed from Conway’s operation names only in the case of medial and 
radial, terms well established in the graph theory literature. Conway’s concise notation system can be a 
little cryptic for the novice, and, in any case, with twenty-one (and counting) map operations, a suitably 
mnemonic mapping to the 26 letters of the alphabet  is beyond reach. Instead, I adopt here the two-letter 
function notation common in the map operations literature. For the names of map operations not in 
Conway, I have adopted Hart’s propellor and reflect [4], and elsewhere followed precedents in the map 
operations literature, but I have rejected subscripts and numerals, and insisted that  “action” names be in 
verb form. Two operations well-known in the computer graphics literature, have been dubbed with the 
first  two letters of the names of the authors most associated with each [5-6]. A composite operation which 
is particularly useful in ring weaving has been dubbed ring.

Having abbreviations of operation names allows one to write out  composite operations and identities in 
function notation. For example, the fact that a map and its dual yield the same medial is expressed:

Me(M) = Me(Du(M)).
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Definition of a Map. Abstracting the definition of a map given in [1]:
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indeed prefer to speak of maps, not limiting ourselves to polyhedra or computer graphics surface models.

Some map operations are fundamental: identity, dual, and reflect are of first importance (reflect [4], 
unfortunately, is one that cannot be accomplished with truchet tiles.) 

Some map operations are composite, meaning that  they can be accomplished by performing a sequence of 
other map operations in a specified order (note that map operations are not  generally commutative.) But, 
since truchet  tiles cannot compose map operations—nor can the visual imagination do this very easily—
some composite map operations are presented here.

Names and Notation. I have strayed from Conway’s operation names only in the case of medial and 
radial, terms well established in the graph theory literature. Conway’s concise notation system can be a 
little cryptic for the novice, and, in any case, with twenty-one (and counting) map operations, a suitably 
mnemonic mapping to the 26 letters of the alphabet  is beyond reach. Instead, I adopt here the two-letter 
function notation common in the map operations literature. For the names of map operations not in 
Conway, I have adopted Hart’s propellor and reflect [4], and elsewhere followed precedents in the map 
operations literature, but I have rejected subscripts and numerals, and insisted that  “action” names be in 
verb form. Two operations well-known in the computer graphics literature, have been dubbed with the 
first  two letters of the names of the authors most associated with each [5-6]. A composite operation which 
is particularly useful in ring weaving has been dubbed ring.

Having abbreviations of operation names allows one to write out  composite operations and identities in 
function notation. For example, the fact that a map and its dual yield the same medial is expressed:

Me(M) = Me(Du(M)).

Order, Type, and Chirality. Map operations can be ranked in orders according to the number of edges 
they place in the resultant map when the base map is a monogon drawn on the sphere. For example, 
identity, dual, and reflect make up the first order, each placing a single edge in the resulting spherical 
map. Subdivide, parallel, radial, and medial make up the second order, each placing two edges in the 
resulting spherical map... and so on.

Map operations can also be typed according to whether, like identity, they include the original vertex of 
the monogon base-map, or, like dual, they delete it. The former will be called i-type, and the latter d-type.

Map operations that  are chiral come in left-handed and right-handed varieties (thus they cannot be used 
on a surface that cannot  be oriented, such as a mobius strip.)  All four of the chiral map operations in the 
present collection are fifth order.

Figure 2: Stretchy triangular tiles can stretch to tile digons (above) and monogons (below.)

Representing  Map Operations with Truchet Tiles

Stretchy Tiles. The truchet  tiles contemplated in this paper are stretchy. That is, we will imagine that a 
patterned triangular tile can be stretched to conform to any size or shape of triangle. A vertex angle can be 
stretched open to 180 degrees—enabling two such tiles to tile a digon (see Figure 2.) Even further, a 
vertex angle can be stretched open to a full 360 degrees, enabling it  to tile a monogon by itself. Note that 
the stretched triangles still have three sides in these tilings—they are topologically still triangles.

Though paper or ceramic tiles cannot stretch in this way, it  is possible to mathematically define a mapping  
(texture-mapping) carrying a pattern or texture from an equilateral triangle onto a half-circle or full circle. 
If the truchet pattern represents fiber elements (weaving) or building elements (tensegrity) the pattern 
joins across tile boundaries are equally valid when the the tile has been stretched in this way.
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Figure 3: Kis on an arbitrary map. Every face in the resultant map is a triangle.

Kis First. To effect map operations with truchet  tiles that are all of the same shape, we need to give 
priority to a particular map operation. Conway's name for it  is kis. A truchet  tile that  pictorially defines kis 
will be introduced later, but in every case we will need to perform kis algorithmically as a preliminary to 
laying down tiles. The preliminary use of kis erases the base map (i.e., the map we are performing the 
operation on,) and replaces it with a set  of "chalk" guidelines whose ultimate fate is to lie hidden behind 
truchet tiles (see Figure 3.)

The kis operation subdivides every face of the base map into triangles, including monogon faces, digon 
faces, and faces that  were triangles to start off with. It  thereby eliminates the need for truchet  tiles in any 
other shape: all we need are tiles in the shape of kis triangles. We will refer to these as kis-truchet tiles. 
Note that  kis-truchet tiles are not  rotationally symmetric. That  is why the new vertices are colored pink: to 
mark how the kis-truchet tiles should be oriented.

Illustrating Kis-Truchet Tiles. There are two ways to illustrate a kis-truchet tile. Drawn as a one-third 
portion of an equilateral triangle (see Figure 4,) a kis-truchet tile looks familiarly like other truchet tiles. 
Alternatively, since they are stretchy, a kis-truchet tile can be illustrated tiling a monogon on the sphere. 
A way to visualize the stretching involved is to cut  a kis-truchet  triangle out  of paper and roll it into a 
cone with the pink vertex at the apex. Viewing the cone end-on reveals the tile wrapped inside a teardrop-
shaped monogon (see Figure 5.)

Algorithm for the Preliminary Kis:

with pink chalk, mark a new vertex in the 

center of each face in the base map,

with blue chalk, draw edges connecting the 

new vertex to each of the old vertices 

surrounding that face,

erase-and-redraw, using blue chalk, all of 

the old vertices and edges of the base map.
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portion of an equilateral triangle (see Figure 4,) a kis-truchet tile looks familiarly like other truchet tiles. 
Alternatively, since they are stretchy, a kis-truchet tile can be illustrated tiling a monogon on the sphere. 
A way to visualize the stretching involved is to cut  a kis-truchet  triangle out  of paper and roll it into a 
cone with the pink vertex at the apex. Viewing the cone end-on reveals the tile wrapped inside a teardrop-
shaped monogon (see Figure 5.)

Algorithm for the Preliminary Kis:

with pink chalk, mark a new vertex in the 

center of each face in the base map,

with blue chalk, draw edges connecting the 

new vertex to each of the old vertices 

surrounding that face,

erase-and-redraw, using blue chalk, all of 

the old vertices and edges of the base map.

Figure 4: A kis-truchet tile for medial shown as 1/3 of a triangle, left, and tiling a monogon, right.

The Chart of Map Operations.

In the following Chart, kis-truchet  tiles for twenty-one map operations are illustrated, both as one-third 
portions of equilateral triangles and as tilings of a monogon on the sphere. 

In interpreting the illustration of the monogon tiling, one should imagine that  the sphere is wearing the 
self-loop and vertex of the monogon base-map like a belt  and buckle around its equator. Imagine yourself 
to be standing "buckle-to-buckle" with the sphere looking down on its northern hemisphere. (A glance in 
the Chart at  the monogon representation for identity 
shows how this looks.) In the chart, all the kis-
truchet triangles are shown with the pink vertex 
pointing down in order to make it  easier to mentally 
roll them into the cones that would correspond to the 
monogon representation.

The sphere also has a southern hemisphere which is 
tiled by any map operation. If we were to turn the 
sphere over (still keeping it  buckle-to-buckle to us) 
the tiling of the southern hemisphere would reveal 
itself to be exactly like that  of the northern 
hemisphere. Alternatively, if we prefer to keep 
things stationary and view the southern hemisphere 
through the northern hemisphere with “x-ray 
vision,”  the southern hemisphere looks like a mirror 
image of the northern hemisphere. In consequence, 
each point on the equator is directly (left  or right) 
across from a point  on the opposite limb of the 
sphere that is its other half. This perimetral bilateral 
symmetry, along with the practical needs to produce 
a connected map and, in general, avoid 1-valent  and 
2-valent vertices, are the main constraints on useful 
map operations.

Figure 5: Kis-truchets rolled into cones with the 
pink vertex at the apex.
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Chart of Map Operations

Map Operation

Order-Type

Monogon 

Representation

Kis-Truchet Triangle Identities

Properties

Aliases

Identity

Id()
1i

Id(M) = M

Dual

Du()
1d

Du(Du(M)) = M Poincare Dual

Subdivide

Su()
2i

Su(M) = 

Du(Pa(Du(M)))

Inserts 2-valent 

vertices in edges.

Su1, 1-Dimensional 
Subdivision

Parallel

Pa()
2i

Pa(M) = 

Du(Su(Du(M)))

Doubles all edges.

Parallelization

Radial

Ra()
2i

Ra(M) = Du(Me(M))

Ra(M) = Ra(Du(M))

Result is bipartite & 

quadrangle-faced.

Join

 Medial

Me()
2d

Me(M) = Du(Ra(M))

Me(M) = Me(Du(M))

Result is 4-regular & 

chess-colorable.

Ambo, Midpoint 
Subdivision, Mid-Edge 
Subdivision

Kis

Ki()
3i

Ki(M) = 

Du(Tr(Du(M)))

Result is triangle-

faced.

P3, Su2, 2-Dimensional 
Subdivision, Stellation, 
Omnicapping

Truncate

Tr()
3d

Tr(M) = 

Du(Ki(Du(M)))

Result is 3-regular.

Truncation

Leapfrog

Le()
3d

Le(M) = Du(Ki(M)) 

Le(M) = Tr(Du(M))

Result is 3-regular

Tripling, Dual √3 Trisection

Chamfer

Ch()
4i

Q, Quadrupling
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Ortho

Or()
4i

Or(M) = Ra(Ra(M))

Or(M) = Du(Ex(M))

Result is bipartite & 

quadrilateral-faced.

P4, Tetrangulation, Edge 
Bisection, Catmull-Clark 
Subdivision, Primal 
Quadrilateral 
Quadrisection

Lo

Lo()
4i

Lo(M) = Ko(Du(M))

Superposes Me(M) 

and Id(M).

2ν Geodesic Breakdown, 
Loop Subdivision, Primal 
Triangle Quadrisection

Ko

Ko()
4i

Ko(M) = Lo(Du(M))

Superposes Ra(M) 

and Du(M).

Primal √3 Trisection

Expand

Ex()
4d

Ex(M) = Me(Me(M))

Ex(M) = Du(Or(M))

Result is 4-regular & 

chess-colorable.

Cantellation, Mrs. Stottʼs 
Expansion Operation, 
Doo-Sabin Subdivision, 
Dual Quadrilateral 
Quadrisection

Ring

Ri()
4d

Ri(M) = Me(Su(M))

Propellor

Pr()
5i chiral

Capra

Ca()
5i chiral Ch(M) + chiral edge.

Septupling

Gyro

Gy()
5i chiral

Gy(M) = Du(Sn(M))

Result is pentagon-

faced.

P5, Pentangulation

Snub

Sn()
5d chiral

Sn(M) = Du(Gy(M))

Sn(Du(M) = Sn(M)

Result is 5-regular.

Ex(M) + chiral edge

Meta

Mt()
6i

Mt(M) = Ki(Ra(M))

Mt(M) = Du(Be(M))

Result is triangle-

faced.

Full Bisection, Barycentric 
Subdivision, 2-D 
Subdivision, Dual Triangle 
Quadrisection

Bevel

Be()
6d

Be(M) = Du(Mt(M))

Be(M) = Tr(Me(M))

Result is 3-regular.

 Omnitruncation
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Practical Applications

Plain Weaving. A common problem in weaving is imagining the reverse face of the work. For example, a 
crossing of a vertical thread with a horizontal thread will—as we might  expect—look different on the 
reverse face, but  a crossing of two oblique threads looks the same! Confusion multiplies when one tries to 
weave a non-orientable surface such as a mobius strip. The surest resort is a technique known in knot 
theory as Tait’s coloring of link diagrams [10], but  first  suggested in relation to weaving by Snelson [11] 
and fully developed by Roelofs [12].

In plain-weaving [13], which is weaving where every element passes over and under in strict  alternation, 
and no three elements cross at the same point, each opening in the fabric is surrounded by a helical 
arrangement of weaving elements. Any such helix can be assigned a left- or right-handedness using the 
same rules as for an ordinary screw. This handedness is intrinsic, it  does not  change with the way we look 
at  the opening. What  is more, in plain-weaving each fabric opening shares edges exclusively with 
openings of the opposite handedness. Such a spatial arrangement  is mathematically termed a proper face 
2-coloring, or chess coloring  [14]. Also, since elements of a plain-weaving cross strictly two-at-a-time, 
the map of a plain-weaving is 4-regular. Thus, more useful than a pictorial representation of a plain 
weaving, is a chess-colored, 4-regular map for it. If such a map is imagined to be inked “right through the 
paper,” it becomes a reliable guide to both faces of the weaving.

The map operation medial always yields a four-regular, chess-colorable map. In fact, a map M is a medial 
map of some map N if and only if M is four-regular and its faces can be chess-colored [15]. Medial is the 
refore the whole story for plain-weaving. All plain-woven baskets correspond to medial maps, and any 
given map can be converted into a design for plain-woven basket  via the medial operation and a chess 
coloring. Medial can be understood as the projection onto the surface of the topological twisting operation 
in [13].

Ring Weaving. Ring weaving, a.k.a. chain mail, is often a variety of plain-weaving. A design for the 
commonest  plain-weave chain mail is generated from any map by chess coloring the map resulting from 
the map operation ring,

Ri(M) = Me(Su(M)).

Figure 5: Monogon representations of chess-colored medial tiles for plain-weaving.

Chess black Chess white
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Chess black Chess white

Coloring Operations. A suitable chess-coloring can be pre-marked on the truchet  tile for a map operation 
since such a coloring is essentially unique. If a map is chess-colorable, then its dual map is bipartite, 
meaning that  its vertices can be colored black and white in such a way that  no two vertices of the same 
color are linked by an edge. Bipartite maps are important in the study of Riemann surfaces, where the 
map operation subdivide is used to generate bipartite maps which are colored according to the convention 
that the “old” vertices are colored black. It seems useful to generalize this coloring convention. Define a 
(meta) map operation, bipartite black, Bb(Xx(M)), as the operation that generates the bipartite-colored 
map (if such exists) of the map Xx(M), using the convention that  all the “old” vertices in Xx(M) are to be 
black. Bipartite white, Bw(Xy(M)), generates the inverse coloring. Dually, define chess black, 
Cb(Yy(M)), as the operation that generates the chess-colored map (if such exists) of Yy(M), using the 
convention that  all the “old” faces of Yy(M), are colored black. Chess white, Cw(Yy(M)), generates the 
inverse coloring. Figure 5 shows the action of chess black and chess white on medial.

Tensegrity. Pugh [16] describes three categories of tensegrity structures, diamond, zig-zag, and circuit. 
All three can be associated with map operations. The diamond tensegrity pattern is isomorphic to snub. 
The compression elements, or struts, of the tensegrity structure, correspond to the chiral edge of snub; the 
remaining non-chiral edges (which, by themselves, could equally well have been generated by the map 
operation expand,) correspond to the tension elements, or tendons, of the tensegrity structure. A monogon 
tiling for snub with the strut indicated by a thicker line is shown in Figure 7a. When the base map is a 
triangle on the sphere, this map operation produces the famous 3-strut, 9-tendon, T-prism. When the base 
map is a tetrahedron, the result is the equally well-known 6-strut, 24-tendon, expanded octahedron.

The situation is a bit  messier for the zig-zag and circuit tensegrity patterns. These patterns have elements 
that crossover each other without  actually touching—thus breaking one of the rules for maps. A stratagem 
is to portray these patterns with the (narrow) tendons overlying the (wide) struts—not  indicating that they 
pass in front, but  rather that  they may pass either in front or behind—as the curvature of the surface 
dictates. Such “floating” tendons and struts are non-physical, but  the problem of deciding whether 
tendons or struts pass in front  is fully determined, in practice, by the spatial coordinates of their 
endpoints. (If the surface the tensegrity structure conforms to is sufficiently curved, strut-tendon and strut-
strut  collisions are avoided.) In circuit, the tendons and struts both align with the edges of medial, but 
struts join in the common vertex only on alternate passes (see Figure 7b.) In zig-zag, tendons align with 
the edges of truncate, while struts align with an additional chiral edge which crosses over a tendon at the 
equator (see Figure 7c.)

Figure 7: Monogon representations of tensegrity patterns.

Texture Mapping Examples of practical uses of map operations are shown in Figure 8. These images 
were realized by texture-mapping a triplet of kis-truchet tiles (in effect, a truchet tile composing a full 
equilateral triangle) onto 3-D models having all-triangle meshes using Processing [17].

Diamond Zig-zag Circuit
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Figure 8: Practical applications of map operations. Model courtesy of INRIA via the Aim@Shape Shape 
Repository.

M Me(M)

Cb(Me(M)) Plain-weaving

Sn(M) Diamond tensegrity

➯

➯
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Figure 8: Practical applications of map operations. Model courtesy of INRIA via the Aim@Shape Shape 
Repository.

M Me(M)

Cb(Me(M)) Plain-weaving

Sn(M) Diamond tensegrity
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



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
      θ         
 θ               



 
  




°
                     
















noon 0.0   
1 10.2 4 49.2 
2 21.1 5 68.2 
3 33.8 6 90.0 




 


     
                 

                  


 

°°°°











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 θ
θθ

 
    

      θ         
 θ               



 
  




°
                     
















noon 0.0   
1 10.2 4 49.2 
2 21.1 5 68.2 
3 33.8 6 90.0 




 


     
                 

                  


 

°°°°












               





 




                   



  Minutes     Minutes 
January 9  July 5 
February 14  August 5 
March 9  September -5 
April 0  October -14 
May -3  November -15 
June 0   December -5 





 

                   









  









           
          

            
         





126

              



                


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Abstract
Geometric tilings have been a key element of architectural design throughout history. This paper describes the
construction of patterns using a decorated triangle and gives several surprising examples demonstrating the use of
this motif. Even with this very simple design element, a wealth of interesting patterns is possible. Such patterns can
be useful in very large field architectural tilings.

1 Introduction

Geometric tilings have been a key element of architectural design throughout history. One of the most simple
tessellations of the plane is the common triangular lattice, where six equilateral triangles meet at every vertex.
In such a tessellation, the underlying polygons can be thought of as tiles. These tiles can also be decorated
with a simple motif to produce more intricate patterns. M.C. Escher was a master at decorating tiles with
people and animals, breathing life into otherwise cold geometric structures.

Even simple motifs can enhance a tiling’s visual interest. For example, Truchet [1] explored the patterns
obtainable from a single square tile that was bisected along a diagonal between opposite vertices. Smith
[2] published an article containing a translation of Truchet’s original paper with some commentary and new
ideas including the use of a random tiling rather than a structured pattern. Smith also included a variant of the
Truchet tile that replaced the triangular segmentation with two quarter-circle arcs, resulting in a tiling that is
comprised of an aesthetically pleasing, meandering set of mostly closed curves. Pickover [3] proposed using
randomly placed Truchet tiles as a way to visually detect patterns in binary data, noting “the eye perceives no
particular trends in the design.” However, he does note small features such as circles and dumbbells. Browne
[4] noted a variety of interesting shapes are possible. The author [5] described how these simple shapes can
be combined to define a font that can be used to embed textual information in the patterns.

A challenge in decorating polygonal tiles with arcs arises when the underlying polygon contains an odd
number of sides. Browne [6] investigated filled patterns on regular polygons regions defined by arcs con-
necting midpoints of polygon sides. Browne uses a motif containing a bifurcation to decorate a triangle. The
author’s previous work [7] investigated motifs on regular polygons where each side was subdivided into an
equal number of segments and connected using Bézier curves. The author’s design uses two components to
decorate an equilateral triangle having side length L. The first is a circular arc of radius a = L/2 that connects
the midpoints of two sides and the second is a short line segment from the midpoint of the remaining side in
the direction of the triangle’s center. This tile decoration is shown in Figure 1. This paper describes the con-
struction of patterns using a decorated triangle as motif and gives several surprising examples demonstrating
the use of this pattern.

2 Methods and Results

There are six possible orientations in which a tile as decorated in Figure 1 can be placed. The arc is centered
at one of the three vertices, giving three possible orientations of the triangle. Because the triangle has two
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Figure 1: The basic decorated equilateral triangle having side length L. The motif is comprised of
two components. The first component of the motif is an arc of radius a = L/2 having endpoints that
are at the midpoints of two sides. The second is a short line segment that starts at the midpoint of the
third side and extends towards the center of the triangle.

orientations in the underlying tessellation, this results in six possible orientations. An example showing a
random placement of tiles is given in Figure 2. A variety of shapes is present, including circles, short line
segments, and longer linear features. Because the decorations of the tile are close to the line segments that
would connect the midpoints of the triangle’s sides to the center, the pattern is similar to the dual of the
triangular tessellation (the hexagonal tessellation).

Some striking regular patterns are also possible using this simply decorated tile. Figure 3 shows four
repetitive patterns that exhibit translational symmetry and four patterns that are constructed on a hexagonal
lattice. Figure 4 shows an example of a frieze pattern. Figure 5 illustrates how this motif can be used to
embed text in the pattern.

3 Discussion

Even with this very simple design element, a wealth of interesting tessellated patterns is possible. One reason
for the visual appeal of the patterns is the arcs of adjacent tiles are not only continuous, but also have a con-
tinuous first derivative resulting in a visually smooth transition regardless of tile orientation. In addition, the
meandering paths created are roughly equally spaced, providing a relatively uniform filling of the plane. The
tension present between the both local similarity and positional regularity and the irregularity of randomly
generated curves provides excitement and movement not present in the underlying triangular or hexagonal
tessellations. Symmetric patterns are easy to create and can be mixed with random tile orientations to cre-
ate patterns with consonance and dissonance. These patterns can be useful in very large field architectural
tilings.
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(A) (B) (C) (D)

(E) (F) (G) (H)

Figure 3: Eight patterns possible using the simple motif show in Figure 1. Patterns that can be
extended infinitely far in all directions are possible, as shown in A through D. Patterns created on a
hexagonal lattice with six fold (E and F) and three fold rotational symmetry (H) are also possible.
Space-filling curves, such as spirals (G), can be easily created.

Figure 4: An example of a frieze pattern obtainable from the motif in Figure 1.

Figure 5: An example showing how letters can be placed in a pattern comprised of modular triangular
units decorated with the motif in Figure 1. The example text reads ISAMA.
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Abstract 

 
 

We present an algorithm that randomly places simple shapes (circles, squares, triangles, and others) without overlap 
in two dimensions.  We describe the mathematics of the process in detail with some conjectures about its properties.  
The distribution of the areas of the shapes is a power law with varying exponents (typically around -1.3 for visual 
art).  When the algorithm continues "to infinity" it fills all space, while the shapes have an infinite total perimeter.  
We show several uses of this algorithm to produce visual art. 

 
An Illustration 

 
A picture is worth ten thousand words 

-- Confucius (?) 
 

 
 

Figure 1: 5000 nonoverlapping fractal circles.  The random colors provide the high contrast needed to 
see the full detail of the image.  The successive circle areas decrease by a power law, while their 

placement is by random search.  Such processes have been found to apply to a wide variety of geometric 
shapes, and in the limit will completely fill all space if properly set up.   The image shows the property of 

"statistical self-similarity", reproducing the same distribution of circle sizes at all length scales. 
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Statistical Geometry 

 
Geometry studies the spatial arrangements of shapes (lines, polygons, circles, ...). 

 
"Statistical" and "geometry" are words not usually seen together, so some explanation of this little-
explored subject is called for. 

 
Geometry is a huge and ancient subject.  Certain branches of geometry have been much used in art and 
decoration.  Tilings of the plane go back a long way, are pleasing to the eye, and have been especially 
prominent in Islamic art and decoration.  Plane tilings pose the question "How do you fill the plane 
without gaps using a limited number of geometric shapes?" ― typically polygons bounded by straight 
lines.  The result is a pattern which covers a bounded region with a finite number of shapes. 

 
A related area of geometry is that of "packings" -- incomplete or maximally-dense filling of a region by 
circles and other simple shapes.  Circle packings alone have a large mathematical literature.  The usual 
rule in circle packings is that one finds a set of circles which all touch (are tangent to) each other. Such 
tangent packings are called "Appolonian" after the ancient Greek mathematician Appolonius of Perga 
who first described such a pattern.  Such packings don't fill the whole region.  These packings have seen 
relatively little use in art.  The packings of interest here are non-Appolonian and violate the rules of 
formal mathematical circle packing. 

 
Traditional decorative geometric patterns are models of order and regularity, with every shape having an 
exact location and no elements of randomness. 

 
One might ask: "Can you cover a bounded region with an infinite number of regular shapes?"  Several 
examples of this are known, such as the Sierpinski carpet [1], but they have found little use in art, perhaps 
because their appearance is not particularly attractive to the average eye.  Such constructions are largely 
recursive. 

 
The geometric construction described here poses a different question: "How do you cover a bounded 
region non-recursively with an infinite number of ever-smaller randomly-placed simple shapes (triangles, 
squares, circles) such that in the limit they completely fill it?"  Despite much searching, I have not found 
any prior account of such an algorithm. 
 
Geometry is a subject of great exactitude. There are precise rules for edges, angles, and vertices. There is 
no place for randomness or uncertainty. But if you look at the pictures hanging on the wall of an art 
museum what you see combines elements of both randomness and order. A street scene, for example, has 
the regular structures of streets and buildings, and the turbulent swirl of vehicles and pedestrians. There is 
an attractiveness to an image which combines elements of both order and randomness. Nature itself 
combines randomness and order. All oak trees have a regular branching structure which the eye easily 
recognizes. But the details differ from one tree to another in a random way. 
 
The geometry described here would startle Euclid. 
 
Conventional tilings have exact symmetry -- it is one of their charms. The shapes making up the pattern 
have rotation, translation, mirror, and other symmetries. The statistical geometry patterns of interest here 
have individual shapes with symmetry (square, circle, etc.) but there is no symmetry at all in their 
placement. What they do have is what might be called fractal symmetry (or "statistical self-similarity") ― 
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The geometric construction described here poses a different question: "How do you cover a bounded 
region non-recursively with an infinite number of ever-smaller randomly-placed simple shapes (triangles, 
squares, circles) such that in the limit they completely fill it?"  Despite much searching, I have not found 
any prior account of such an algorithm. 
 
Geometry is a subject of great exactitude. There are precise rules for edges, angles, and vertices. There is 
no place for randomness or uncertainty. But if you look at the pictures hanging on the wall of an art 
museum what you see combines elements of both randomness and order. A street scene, for example, has 
the regular structures of streets and buildings, and the turbulent swirl of vehicles and pedestrians. There is 
an attractiveness to an image which combines elements of both order and randomness. Nature itself 
combines randomness and order. All oak trees have a regular branching structure which the eye easily 
recognizes. But the details differ from one tree to another in a random way. 
 
The geometry described here would startle Euclid. 
 
Conventional tilings have exact symmetry -- it is one of their charms. The shapes making up the pattern 
have rotation, translation, mirror, and other symmetries. The statistical geometry patterns of interest here 
have individual shapes with symmetry (square, circle, etc.) but there is no symmetry at all in their 
placement. What they do have is what might be called fractal symmetry (or "statistical self-similarity") ― 

a regular progression in the sizes of the shapes. The eye recognizes this kind of symmetry. Apparently 
even untrained observers see this, although they don't know what to call it. 
 

Rules of Construction 
 

Suppose that we have a bounded region of area A. We intend to fill it with similar geometric shapes 
having a sequence of areas A1, A2, ... (to infinity). The areas Ai are to be computed using a mathematical 
rule with no randomness. 

 
The algorithm begins by placing shape A1 somewhere within the region. It then proceeds to generate 
random positions x,y within the region for the following shapes in the sequence, and for each one tests 
whether the given shape An overlaps any previous Am. If it does not overlap, this is a "successful 
placement" and x,y and the size and shape of An are placed in a file and the process repeated for the next 
shape An+1, or else a new trial position is generated. 
 
If the shapes are to completely fill the area A in the limit, it is evident that one must have 
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The area An of the n-th shape is to be chosen according to a mathematical rule. It is evident that the rule 
must be such that the sum above is convergent. The sequence of areas An should follow some ever-smaller 
rule: An = g(n) for the n-th shape. 
 
Many functions obey the obvious requirements: exp(-an), exp(-an2), and power laws 1/nc.   Here a and c 
are parameters which need to be chosen such that Eq. (1) is satisfied.  (The sum in Eq. (1) does not 
converge for all values of c when a power law is used.  See [2] for details.) 
 
If the sum in Eq. (1) is less than A, the region will never be completely filled. If the sum is greater than A, 
the process of seeking random unoccupied positions for ever-smaller shapes will come to a halt at some 
point for lack of space. 
 
Power-law functions An = A1n-c (exponent c) are the only ones which have been found to work in 
computer trials.  Useful c values for art lie between 1 and 2. The "tailing off" of g(n) must be slow enough 
that there is always room in the lacy "gasket" of unoccupied space for another placement. The gasket 
must get narrower at just such a rate that allows this. 
 
For a power law Eq. (1) becomes 
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The sum can be recognized as the series which defines the Riemann zeta function [2] so that 
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where -1( ) is the inverse zeta function.  Thus this process does not have a unique power law exponent, 
but rather an exponent which varies depending on the choice made for the ratio of A1 to total area A. It 
may be that this is the first-ever practical application of the Riemann zeta function. 
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In the above calculation it is assumed that all shapes will be placed completely inside the bounded area A. 
This is easy to do computationally. Other choices such as periodic or cyclical arrangements are possible 
but so far unexplored. 
 
It has been found that the process also works if the sequence in Eq. (2) does not begin with n = 1, but 
starts with some higher value of n.  Here the Hurwitz zeta function [2] replaces the Riemann zeta 
function. Or one can have various laws for Ai versus i for the first N terms and then go over to a power 
law for n > N, as long as Eq. (1) is satisfied. 
 
The process has been used with circles, squares, nonsquare rectangles, and equilateral triangles. The 
process has been found to run smoothly when set up as described. 
 
By construction the shapes are non-touching (non-Appolonian). With finite-accuracy computing they 
sometimes touch and may even seem to be slightly overlapping in images. This results from finite 
precision and roundoff error. 
 

Observed Properties 
 
The remarks here apply to the case where one starts with n = 1 as in Eq. (2). 
 
This process operates within a very narrow window. For a given choice of A and A1 there is only one 
value of c which works. 
 
It isn't obvious to me why a power law is the unique choice here. Perhaps a rigorous proof of this is 
possible for this simple "model" system. 
 
While the total area of the shapes has been set up to go to a particular limit, the perimeter grows without 
limit as n increases. This is characteristic of fractal sets (e.g., Sierpinski [1]). 
 
It has been found in computational experiments that the process does seem to run on "forever" if a power 
law is used as described above. Sequences of up to 500000 shapes have been computed in this way with 
no sign that the process will quit (but it does slow down a lot). If the process described here is viewed as a 
way of measuring area, it reveals a rather surprising property of space. 
 
The process uses random iterations of x,y to find a successful placement. The total (cumulative) number 
of iterations nit needed follows an increasing power law in n, nit = n0nf, with an exponent f. Study of 
computed data shows that f  c, i.e., the (negative) value of c is the same (within statistical error) as the 
(positive) value of f. (It is not at all obvious to me why this should be so.) Thus there is a smooth and 
regular increase in the average amount of computation for each new shape. This says that the useful (big 
enough) space for placement is going down by a power law since the probability of placement is a 
measure of the available area. This supports the idea that the process will always find a place for a new 
shape "to infinity" in a finite number of iterations. 
 
The following data was found using estimates from computation runs with the stated c values. The mean-
square estimates of f and n0 are thus subject to some uncertainty since we deal with a random process. 

c = 1.15   f = 1.1513   n0=2.70 
c = 1.24   f = 1.2429   n0=8.09 
c = 1.31   f = 1.3038   n0=34.3 
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The process uses random iterations of x,y to find a successful placement. The total (cumulative) number 
of iterations nit needed follows an increasing power law in n, nit = n0nf, with an exponent f. Study of 
computed data shows that f  c, i.e., the (negative) value of c is the same (within statistical error) as the 
(positive) value of f. (It is not at all obvious to me why this should be so.) Thus there is a smooth and 
regular increase in the average amount of computation for each new shape. This says that the useful (big 
enough) space for placement is going down by a power law since the probability of placement is a 
measure of the available area. This supports the idea that the process will always find a place for a new 
shape "to infinity" in a finite number of iterations. 
 
The following data was found using estimates from computation runs with the stated c values. The mean-
square estimates of f and n0 are thus subject to some uncertainty since we deal with a random process. 

c = 1.15   f = 1.1513   n0=2.70 
c = 1.24   f = 1.2429   n0=8.09 
c = 1.31   f = 1.3038   n0=34.3 

 

The power law for nit does not apply to the first few placements since they are exceptional. Usually 
enough "slack" is left after the initial placement that the algorithm has an artificially easy time for the first 
few placements. As n increases the process goes over more and more to a "steady state". 
 
For a given n, the number of iterations needed can be 1, 2, 3, ... . Study of histograms of these numbers 
shows that for large n the distribution is accurately represented by a decaying exponential function. This 
agrees with the fact that the Poisson distribution goes over to an exponential form when the probability of 
an individual event (here a successful placement) is << 1. 
 
With its lengthy searches over the "back list" of shapes and their positions, this is a very slow and 
inefficient algorithm, although simple and easy to code (less than 50 lines of C code for the central loop). 
Of simple shapes, the square runs fastest. Improved searches should be possible. 
 
One can define a crude measure of the "effective width" of the lacy "gasket" by taking the ratio Agask (the 
original area A with holes cut out for every shape) divided by the perimeter Pgask of all shapes (both 
functions of n, where n is the number of shapes placed). 
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How does this compare with the size of the i-th shape? In the circle case we can define a dimensionless 
ratio b by 
 
 )5(/)( gaskgask PdiamAnb   
 
where diam is the diameter of the n-th circle.  This has been computed using data from a run of the 
algorithm, and also from formulas. Data from a computer run with c = 1.24 is as follows: 

n = 1000   b =  .4197 
n = 2000   b =  .4140 
n = 3000   b =  .4114 
n = 4000   b =  .4096 
n = 5000   b =  .4086 

 
One can see that while b is not quite a constant versus n, it has a very slow variation. A check of this 
versus computation using formulas gave agreement to nearly 4 decimal places (satisfactory in view of 
numerical and statistical accuracy). What this means is that as n increases the "effective width" of the 
gasket falls in step with the size of the shape, which explains why random placements continue to be 
possible all the way "to infinity". 

 
It could be that the weaker variation for large n reflects the approach of the process to "steady state". To 
date it is unclear whether b really passes to a finite limit for large n. 
 
If one just looks at the formulas it is not at all obvious that b should be nearly flat versus n, since it 
contains the divergent perimeter Pgask. (1/diam also grows without limit.) 
 
The great majority of known mathematical fractal patterns are recursive in nature. This one joins the 
small set of nonrecursive fractals. In its randomness it resembles natural fractals such as "the coastline of 
Britain" or "all the islands of the world" discussed by Mandelbrot [1]. 
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As the algorithm proceeds, one can think of the placement process as being in a "critical state". If the 
exponent c varies even slightly from its precise value for a given A1, the process will not fill all of the 
space available, or it will come to an end when it cannot place another shape. 
 
These patterns can be viewed as tessellations if the reader is willing to extend this idea to an infinite 
number of tiles which cover a given space.  The author knows of no natural objects for which this 
construction could serve as a model, but if the algorithm comes to be known by many people I have little 
doubt that some will be found. 
 
One might think of an empty world in which the first person to arrive stakes out a territory A1. As more 
people arrive they stake out territories A2, A3, ... in the unoccupied part. Eventually the entire area is filled 
by ever-more people occupying ever-smaller territories -- but they never run out of room for another 
territory so peace is preserved. 
 

Conjectures 
 

It would be interesting if it could be shown that the power laws used here are the only laws which work. 
 
It is noted that available data says that the exponents f and c are the same (within statistical error) for 
sequences beginning with 1. It would be interesting if it could be shown that the most probable value or 
the expectation value of f is c in this case. 
 
It would be interesting to clarify the asymptotic behavior of the ratio b defined above as n goes to infinity. 
This problem does not involve randomness since it depends only on nonrandom calculations of the gasket 
area, perimeter, and size versus n. This problem intimately involves (various sets of terms in) the infinite 
series for the zeta function. 
 
The quantity b can be defined for any functional rule Ai = g(i). It can be speculated that near-constancy of 
b as n goes to infinity is a requirement for any successful algorithm of this kind. In fact, by calculating the 
b parameter on-the-fly as the algorithm progresses, it might be possible to develop an "adaptive" choice 
of the next circle size. 
 
The author does not know of any formal scheme for describing the statistical properties and ordering of 
an object of this kind. Statistical physics has a vast body of theory developed by several generations of 
physicists since Boltzmann and Gibbs, but that is lacking here. The physics case is greatly aided by the 
fact that every atom of a given kind is identical to every other. Here the individual elements (shapes) are 
all different. 
 
It would be interesting to determine what classes of shapes can be "fractalized" using this algorithm, and 
what can't. The algorithm works well for a circle or square (low perimeter-to-area ratio). It also works for 
nonsquare rectangles of mixed orientation. It fails to work for the equilateral triangle without additional 
requirements such as opposite orientations at each step (Figure 4). 
 

Examples 
 
One of the problems with images of these patterns is that the placed shapes may so nearly fill the area that 
the eye blends them all into one big blur.  For this reason I have limited the filling factor to 90% or less.  
The background is white.  The author has computed patterns with up to 97% filling factor containing 
500000 shapes.  Further examples can be found at the author's web site [3]. 
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Figure 2: 5000 fractal squares.  83% space filling. 
 

 
 

Figure 3: 5000 mixed-orientation fractal rectangles.  2.5 to 1 aspect ratio.  83% space filling. 
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In Figure 3 all of the rectangles have the same areas as in Figure 2.  They are elongated with a 2.5 to 1 
aspect ratio, and the "vertical" shapes are gray while the "horizontal" ones are black.  The aspect ratio 
changes each cycle, so that even-numbered shapes are gray and odd-numbered ones black, etc.  The 
reader may note that there is an ordering property here.  If a large gray shape got an early placement in a 
given area, it is surrounded by mostly gray rectangles, etc.  While this is a random process, the 
randomness is constrained by all of the previous placements. 
 

 
 

Figure 4: 2500 fractal equilateral triangles.  88% space filling.  c = 1.4214.  One suggested title for this 
image is "Sierpinski exploded". 

 
Figure 4 shows equilateral triangles.  It is interesting that the algorithm fails (by stopping) if all of the 
triangles have the same orientation.  If the process is modified so that odd numbered triangles are "up 
arrows" while evens are "down arrows" the process works quite well, and that is the case shown here.  
The black triangles are "up arrows" as drawn, and the gray ones "down arrows".  The viewer will note a 
strong ordering here; the immediate neighbors of an "up" are mostly "downs", etc. 
 
Another case studied was "L-shaped" polygons (not shown).  Such a polygon is non-convex and it was 
thought this might make a difference.  The algorithm ran flawlessly. 
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Figure 5: Geometric patterns often lend themselves to decorative uses.  This example, with 4000 yin-
yang symbols, should please east Asians.  Happy Chinese New Year!   

 

 
 

Figure 6: Modern life offers a confusing chaos of directions as expressed in this image.  The arrows are 
inscribed at locations of circles.  With more elaborate programming the entire space could be filled with 

arrows. Three random colors and random orientations. 
 

 
 

Figure 7: Numbers have a continuing fascination for mathematicians, gamblers, and anybody who works 
with a computer.  Here we see the 9 digits in a rather squarish font placed at the locations of fractal 

squares.  The colors are chosen by random walk in color space, in the order largest to smallest. Each 
number size has a corresponding color.  The winning lottery number is in here somewhere. 
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Figure 8: "The Devil's Checkerboard". In a checkerboard one colors alternating squares of a regular 
grid black or white (or two other colors).  Here the same thing has been done for fractal squares.  The 

largest is black, the second-largest white, in alternation black-white-black- ...  .  The red color is the part 
of the original plane which has not been covered with any squares (the "gasket").  This illustrates the 

random nature of the process, and the regular progression in the areas of the squares.  When the filling 
factor exceeds about 95% the "gasket" becomes difficult to see.. 

 
References 

 
[1] Benoit B. Mandelbrot,  Form, Chance, and Dimension,  W. H. Freeman, San Francisco (1977). 
 
[2] The Riemann zeta function is famous among mathematicians for its link with the theory of prime 
numbers.  Wikipedia has articles on both the Riemann and Hurwitz zeta functions. 
http://en.wikipedia.org/wiki/Riemann_zeta_function  
http://en.wikipedia.org/wiki/Hurwitz_zeta_function 
 
[3] The author's web site is http://john-art.com 
 



141

 

 
 

Figure 8: "The Devil's Checkerboard". In a checkerboard one colors alternating squares of a regular 
grid black or white (or two other colors).  Here the same thing has been done for fractal squares.  The 

largest is black, the second-largest white, in alternation black-white-black- ...  .  The red color is the part 
of the original plane which has not been covered with any squares (the "gasket").  This illustrates the 

random nature of the process, and the regular progression in the areas of the squares.  When the filling 
factor exceeds about 95% the "gasket" becomes difficult to see.. 

 
References 

 
[1] Benoit B. Mandelbrot,  Form, Chance, and Dimension,  W. H. Freeman, San Francisco (1977). 
 
[2] The Riemann zeta function is famous among mathematicians for its link with the theory of prime 
numbers.  Wikipedia has articles on both the Riemann and Hurwitz zeta functions. 
http://en.wikipedia.org/wiki/Riemann_zeta_function  
http://en.wikipedia.org/wiki/Hurwitz_zeta_function 
 
[3] The author's web site is http://john-art.com 
 

Sculpturing with Vertex Components

Qing Xing1, Gabriel Esquivel1, Ergun Akleman2, Shi-Yu3, Jianer Chen3, and Jonathan Gross4

1Department of Architecture, Texas A&M University
2Department of Visualization, Texas A&M University

3Department of Computer Science, Texas A&M University
4Department of Computer Science, Columbia University

Abstract
In this short paper, we present our initial results based on a new approach we have developed for physical construction
of large structures. To convert a surface to a structure we use the ”band decomposition” obtained by 2D-thickening
the graph within the surface. This band decomposition is contractible to that graph. In a 2D-thickening, each vertex
thicken to a polygon (or a disk) and each edge thickens to a band. The resulting band decomposition where each
polygon corresponds to a vertex and each band corresponds to an edge that connects vertex regions.

Figure 1: These sculptures that represent Archimedean solids are constructed with laser cut poster-board
papers assembled with brass fasteners.

1 Introduction

With the design and construction of more and more unusually shaped buildings, the computer graphics com-
munity has started to explore new methods to reduce the cost of the physical construction for large shapes.
Most of currently suggested methods focus on reduction of the number of differently shaped components to
reduce fabrication cost. In this work, we focus on physical construction using developable components such
as thin metals or thick papers. In practice, for developable surfaces fabrication is economical even if each
component is different. Such developable components can be manufactured fairly inexpensively by cutting
large sheets of thin metals or thin paper using laser-cutters, which are now widely available.

We observe that one of the biggest expenses for construction of large shapes comes from handling and
assembling the large number components. This problem is like putting pieces of a large puzzle together.
However, unlike puzzles we do not want construction process to be challenging. Instead, we want to simplify
the construction process in such a way that the components can be assembled with a minimum instruction
by the construction workers who may not have extensive experience.

In this work, we present our initial results based on an approach we are currently developing to auto-
matically create developable components that can easily be assembled from any given manifold mesh (see
Figure 1). Our approach is based on classical Graph Rotation Systems (GRS)[4]. Each developable com-
ponent, which we call vertex component, is a physical equivalent of a rotation at the vertex v of a graph

1
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(a) Vertex components (b) Elements of vertex component (c) Fasteners (d) Assembling vertex components

Figure 2: Construction elements. (a) is an example of vertex component that is cut with laser cutter, (b)
shows elements of vertex component and (c) shows the fasteners and (d) is a photograph of during the
process of assembling vertex components with fasteners.

G. Each vertex component is a star shaped polygon that physically corresponds to the cyclic permutation
of the edge-ends incident on v (See Figure 2(a)). We engrave edge-numbers with laser-cutters directly on
edge-ends of vertex components to simplify finding corresponding edge ends. When we print edge-numbers,
we actually define a collection of rotations, one for each vertex in G. This is formally called a pure rotation
system of a graph.

Figure 3: This large sculpture of Bunny is constructed with laser cut poster-board papers assembled with
brass fasteners.

2 Mathematical Foundations

The fundamental Heffter-Edmunds theorem of GRS asserts that there is a bijective correspondence between
the set of pure rotation systems of a graph and the set of equivalence classes of embeddings of the graph in
the orientable surfaces. As a direct consequence of the theorem, to assemble the structure all construction
workers have to do is to attach the corresponding edge-ends of vertex components. Once all the components
are attached to each other, the whole structure will correctly be assembled.

Our construction, moreover, provides an close approximation of the shape of the surface by providing
local and global Gaussian curvature characteristics of the original surface. Gaussian curvature is an extremely
useful measure for shape and structure of surfaces since it relates topology and geometry of the surface
through the Gauss-Bonnet Theorem, which implies that for a manifold mesh M , the total Gaussian curvature
must be equal to 2π times χ(M ), the Euler characteristic of the corresponding surface [?, 5, 6, 1]. For
instance, for a genus-0 manifold mesh, this sum must be equal to 4π . On the other hand, for genus-1
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surfaces, the Euler characteristic is zero; therefore, the face-defects must sum to 0.
Since the structure is made up only developable components, Gaussian curvature is zero everywhere

on the solid parts. The Gaussian curvature happens only in empty regions and that are determined uniquely.
Since, we correctly form Gaussian curvature of holes, the structures will always be raised and formed 3-space
by closely approximating overall shape of the initial surface.

In this work, we convert polygonal meshes to sculptures that are made up developable vertex components.
In polygonal meshes, we use discrete versions of Gaussian curvatures. Discrete Gaussian curvature for
vertices of triangular (or planar) meshes is called vertex defect and for every vertex of piecewise planar
meshes [2, 3], it is defined as

Θ = 2π −
n−1

∑
i=0

θi

where θi is is the angle at corner i of vertex and n is the valence of the vertex.
The resulting sculptures represent the dual of the original polygonal mesh. Therefore, the faces (i.e.

holes) of the sculpture correspond to the vertices of the original mesh. On the other hand, the vertices
of the sculpture (vertex components) correspond to the faces of the original mesh. Note that the faces of
original mesh are either planar or approximately planar. It is therefore easy to create the vertex components,
which can be fabricated with developable materials such as paper or thin metal. When we use developable
materials, if there is no deformation regardless of how much we bend the components Gaussian curvature is
zero [2]. In other words, Gaussian curvature happens only at the holes of the final sculptures. Since, these
holes correspond to vertices of original polygonal mesh, the Gaussian curvature of any hole must correspond
discrete Gaussian curvature of its corresponding vertex in the original polygonal mesh.

Note that Discrete Gaussian curvature for a face is called face defect [1], it is defined as

Φ =
n

∑
j=0

φ j − (n−2)π (1)

where φ j is the angle at corner j of hole and n is the number of the sides of the face. The Gaussian curvature
for holes will also be computed the same way. To make Gaussian curvature of every hole Φ equal to Θ of
its corresponding vertex in the original mesh is easy. Let φi and θi be two corresponding corners of a hole in
the sculpture and its corresponding vertex in the original mesh. If we choose φi = 2π −θi, then Φ become
equal to Θ for these corresponding hole and vertex. We use this property to create vertex components.

3 Methodology and Implementation

We have developed a software that automatically creates and draws the shapes of vertex components from
any given polygonal mesh. Our vertex components guarantee to construct a close approximation of initial
mesh surface. There are three properties of our vertex components that guarantee to obtain a nice developable
sculpture that is a close approximation of initial manifold mesh surface

• Our vertex components are guaranteed to be developable. Therefore, Gaussian curvature is zero every-
where except holes.

• Our method guarantees that the Gaussian curvature of any hole resulting from construction provides
a discrete Gaussian curvature that exactly the same discrete Gaussian curvature of its corresponding
vertex in the original polygonal mesh. This property guarantees that the shape of the sculpture will
closely resemble the shape of the original polygonal mesh.

• Since Gaussian curvature directly comes from original polygonal mesh, the total discrete Gaussian
curvature over the whole sculpture is equal to total discrete Gaussian curvature of the original polygonal
mesh, which is the Euler characteristics times 2π . This property guarantees that the sculpture will be
closed without any deformation.
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4 Results

Using the software, we have first converted simpler polygonal meshes such as Archimedean solids into paper
sculptures as shown in Figure 1. We have also build toroidal surfaces, which are not shown here. Our initial
experiments showed that one of the problems for construction workers will be to find desired components
among a large number of pieces. To simplify the process, we have also developed strategies for easily
finding corresponding pieces among a large number of vertex components. Using this approach, Architecture
students have constructed a large version of Stanford Bunny (see Figure 3) in a design and fabrication course
in College of Architecture. The costs of poster-board papers and fasteners were very minimal, less than
$100. We are currently working on to construct even larger shapes using stronger materials. We are also
planning to use the structures obtained by this approach as molds to cast large plaster or cement sculptures.
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Abstract 
We present a method to design and construct shapes with twisted developable pieces. Using our 
method, interesting shapes can be designed and constructed using sheet metals and/or papers. We have 
provided a large set of prototype shapes that are designed and constructed with our method. These 
shapes consist of only a few number pieces that are cut with laser cutter. Figure 1 shows an example of 
such twisted developable shapes.  
 

  
 
Figure 1. An example of developable surface that is constructed from two twisted pieces of paper. We 
have painted the surface to obtain a shiny metallic look.  
 

Introduction 
The advances in computer graphics and shape modeling help fuel the imagination of contemporary 
architects, sculptors and designers by allowing them to design new forms in a wide variety of scales. 
World-renowned architectural firms such as Gehry Associates routinely design and construct unusual 
shaped buildings such as Guggenheim Museum in Bilbao. Designers like Tony Willis invents new 
forms. Sculptors such as Eva Hild discover and design unusual minimal surfaces. 

 
Large scale shapes such as buildings and sculptures are almost always uniquely designed and 
constructed.  The more frequent use of unusual shapes in architecture and sculpture resulted in a 
demand for research reducing the construction cost.  
One possible way for cost effective construction is to use building blocks that can economically be 
produced and can easily be assembled.  In the construction of an unusual architectural structure, it is 
common to use developable surfaces since they are easy to manufacture and assemble.  
 
In mathematics, a developable surface is a surface with zero Gaussian curvature. In other words, a 
developable surface can be flattened onto a plane without distortion. Thin metals and paper sheets are 
examples of developable surfaces. 
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For the design and construction of large scale curved shapes, pieces of developable surfaces are most 
useful since they can be manufactured inexpensively by using laser-cutters on thin metal sheets or 
papers.  The final shapes can be constructed physically joining these pieces of metal sheets or papers. 
 
In this paper, we introduce a method to design and construct shapes with twisted developable pieces. 
Figure 1 shows a paper prototype that is designed and constructed with our method. The whole shape 
consists of only two pieces of paper stripes that is cut with laser cutter.  
 
One of the intriguing types of developable surfaces are obtained by twisting the papers and the most 
well-known example of paper twisting is the Möbius strip, which can easily be obtained by half-
twisting a paper and connecting ends.  Mathematically speaking the Möbius strip is a non-orientable 
surface with only one side and only one boundary component. Twisted papers can be best 
approximated by a series of bilinear pieces, therefore, it is hard to design freely twisted papers using 
computers.  
 
In this work, we introduce a method to design shapes with twisted pieces using TopMod3D, which is a 
publically available topologically robust polygonal modeler that has been developed, implemented by 
the research group at Texas A&M University [34,35]. The main achievement with this modeling 
system is the development of new ways and tools to design polygonal meshes with huge number of 
handles, holes and columns, i.e., very high genus 2-manifold meshes.  TopMod3D is compatible with 
commercial modeling systems i.e.  models created in this system are portable, and can be manipulated 
in other systems like Maya.  

We design twisted components using the handle creation tool in TopMod3D  [36]. The handle creation 
tool allows designing twisted handles that consists of long triangular stripes. Using this approach it is 
possible to design shapes with large number of holes. This initial triangulated model let us do minor 
modifications in the designs using commercial software such as Maya [37] without destroying the 
developable property.  We unfold the model using Pepakura [38]. We are currently constructing a large 
number of small scale prototypes using paper (see Figure 1,2, and 3). We will construct one or two of 
them larger scale using thin metal sheets.  

Motivation 
Architects are always working so far on the problem of "enclosure" of space in a more abstract sense, 
new technologies have created the possibility of mass-customization, these new technologies suggest a 
fundamental shift in the way in which design and construction have been traditionally practiced, 
creating unprecedented opportunity for the redefinition of the architect, and posit a new ideology borne 
from the connection between design and fabrication. 

New digital tools for design and fabrication have made possible the coordination and realization of 
buildings of unprecedented surface complexity, however simultaneously they solicit abstract geometric 
design practices that are inconsiderate to material behavior, fabrication limitations, and construction 
implications; often necessitating extensive reverse-engineering operations. A new praxis for digital 
tools and parametric design must be cultivated, one in which designers consider process, materials, and 
machines as the medium of architecture, understanding architecture as a material practice. Working 
within the parameters and implicit/explicit forces of manufacturing, fabrication, and construction from 
the outset of the design will make accessible unprecedented economies in production, new possibilities 
for the form of architecture, and further, it will give us the ability to evolve and improve these systems 
(parameters) over time. 
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The importance of this research is precisely the connection to architecture and fabrication. Some 
buildings keeping in mind that all surfaces have to have zero Gaussian curvature, which means they 
need to be developable surfaces. Projects like the MARTa Herford Museum by Frank Gehry [39] or the 
Dalian International Conference Center by Coop Himmelblau [24] both use developable surfaces as 
part of their formal strategy. Figure 2 shows another developable project by Frank Gehry, Walt Disney 
Concert Hall in Los Angeles. The material interpretation as well as construction process varies. In the 
case of the MARTa museum is shielded by a semi-transparent metal screen and connects the different 
parts of the complex. According to Bollinger + Grohmann, the structural engineering firm of record for 
the project, based on precise 3-D data, all components for the sculptural steel structure of the roof were 
CNC-fabricated (computer numerical controlled). 

 

  
Figure 2. Frank Genry’s Walt Disney Concert Hall in Los Angeles. (Photo by Ergun Akleman).  

 

CNC-milled stainless steel panels were mounted like overlapping shingles on the secondary structure 
of the double-curved lattice shell, the firm says. The manufacturing of the complex formwork for the 
curved reinforced concrete walls also was based on CAD data and subsequently insulated and clad with 
cement on the exterior before applying the brick. The Dalia used a similar material and tectonic 
strategy using steel construction and stainless steel tessellated surface that wraps entire building 
volume, but no sue of brick The main argument is the relation between surface and structure favoring 
the understanding of the geometry as the most important factor to prevent reverse engineer. The 
material studies to determine different possibilities to look into conventional materials like stainless 
steel and brick but more interestingly looking for new surface materials that are developable and at the 
same time they have structural capabilities. 

Previous Work 
Developable surfaces are defined as the surfaces on which the Gaussian curvature is 0 everywhere [41]. 
The developable surfaces are useful since they can be made out of sheet metal or paper by rolling a flat 
sheet of material without stretching it [35]. Most large-scale objects such as airplanes or ships are 
constructed using un-stretched sheet metals, since sheet metals are easy to model and they have good 
stability and vibration properties. Moreover, sheet metals provide good fluid dynamic properties. In 
ship or airplane design, the problems usually stem from engineering concerns and in engineering 
design there has been a strong interest in developable surfaces. For instance, modeling packages such 
as Rhino provides developable surface analysis [35, 36]. 

Although, once designed, it is easy to physically construct developable surfaces using sheet metal or 
paper, it is not that easy to provide computational models to represent developable surfaces. Sun and 
Fiume developed a technique for constructing developable surfaces [19]. Günter Aumann recently 
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developed an algorithm to for designing developable Bezier surfaces [29] and Chu et al. provided a 
method to approximate strips with developable Bezier patches [30].  But, these methods are useful only 
to represent ribbons and it is hard to use to represent general developable surfaces.  

Haeberli has introduced a method to represent a shape with piecewise developable surfaces and 
developed a Lamina Design Software [7]. The current results seem to be limited but the Haeberli’s 
approach Lamina has a great potential for developable surface design. Mitani and Suzuki introduced a 
method to approximate any given shape using developable surfaces to create paper models [11]. 
Because of the approximate nature of their models, there exists gaps between individual pieces and 
therefore, their method is not suitable for engineering application. Most importantly, Pottmann and 
Wang recently developed wide variety of methods that can revolutionize the usage of developable 
surfaces in architecture and sculpture [31,32].  

Sheet metal is not only excellent for stability, fluid dynamics and vibration, but also one can construct 
aesthetic buildings and sculptures using sheet metal or paper. Developable surfaces are frequently used 
by contemporary architects, allowing them to design new forms. However, the design and construction 
of largescale shapes with developable surfaces requires extensive architectural and civil engineering 
expertise. Some architectural firms such as Gehry Associates, Asymptote Architecture and Coop-
Himmelblau can take advantage of the current graphics and modeling technology to construct such 
revolutionary new forms [12,39,41,24]. Some architectural structures can be easier to construct with 
developable surfaces. For instance, Fishback and Tuazon introduced Randome, a dome like structure 
that is constructed from developable surfaces [6].  

Developable surfaces are also useful interesting for sculptural design and construction. It is possible to 
find new forms by physically constructing developable surfaces. Antoine Pevsner is one of the first 
sculptors who experiment with developable surfaces [40].  Ilhan Koman during the 1970’s invented a 
number of developable forms [8,9,10,25,26] (see Figure 3). Sculptures of Richard Serra are also 
developable surfaces [27,28]. 

Recently, very interesting developable sculptures, called D-forms, were invented by the London 
designer Tony Wills and introduced by Sharp, Pottman and Wallner [16, 13]. D-forms are created by 
joining the edges of a pair of sheet metal or paper with the same perimeter [16, 13]. Pottman and 
Wallner introduced two open questions involving D-forms [13, 5]. Sharp introduced anti-D-forms that 
are created by joining the holes [17]. Akleman & Gonen presented a method for computer aided design 
of D-forms [23]. Ron Evans invented another related developable form called Plexagons [4]. Paul 
Bourke has recently constructed computer generated both D-forms and plexons [2,4] using Evolver 
developed by Ken Brakke [1]. 

   

Figure 3. Examples of Ilhan Koman’s developable forms. (Photographs curtesy of Koman Foundation) 

 

Practical Problems Resulted From Theoretical Constrains 
In this section, we discuss two theoretical constraints to obtain closed shapes by combining 
developable pieces.   

The Gauss–Bonnet theorem is an important constraint for shape design since it connects the geometry 
of the surfaces to their topology. The theorem is named after Carl Friedrich Gauss since he was aware 
of a version of the theorem but never published it, and Pierre Ossian Bonnet who published a special 
case in 1848.  

The Gauss-Bonnet Theorem implies that for a manifold mesh M, the total Gaussian curvature must be 
equal to 2 times (M), the Euler characteristic of the corresponding surface. If M is a genus g 
orientable surface, i.e. it has g number holes or handles, Euler characteristic is given as (M)=2g-2. In 
other words, the total Gaussian curvature of a genus g surface must be equal to 4(g-1).  For instance, 
for a genus-0 surface, such as sphere, this sum must be equal to 4.  For a genus-1 surface such as 
donut, the total Gaussian curvature is zero.  

One of the fortuitous properties of shapes that are constructed from developable pieces is that Gaussian 
curvature exists only in the connections of developable pieces.  In other words, if we assume that each 
developable piece is a face a manifold mesh, the Gaussian curvature discrete and exists only in vertices 
and edges of this mesh.  Discrete Gaussian curvature in vertices is called “vertex defect” and computed 
as 2 - ∑ Ɵi where Ɵi is the angle of corner i of the given vertex.  

If vertex defect is negative, local region around this vertex is a saddle. If vertex defect is 0, then the 
local region is either planar or developable. If it is positive, then the local region is either minimum or 
maximum. (For more information about Gaussian curvature and Gauss-Bonnet theorem see [33]).  
Since edges can be considered a series of 2-valence vertices, it is also possible to introduce Gaussian 
curvature on edges as a series of vertex defect. In fact, D-forms are resulted from this property.  

The practical problem caused by the constraint explained by the Gauss-Bonnet theorem is that (except 
simple D-forms) it is very hard to introduce exactly amount of Gaussian curvature to obtain a closed 
shape with any given number of holes. If the Gaussian curvatures do not add up to 4(g-1), the shapes 
never close. As a result, to create a closed shape, there is a need to introduce discrete Gaussian 
curvature in such simple way that the resulting shapes can always be closed. In this paper, we provide a 
simple solution to overcome this constraint.  

Conical Mesh constraint is motivated by an ACADIA paper by Gehry Partners and Schlaich 
Bergermann and Partnersn [42] that argues why freeform glass structures with planar quadrilateral 
facets are preferable over structures built from triangular facets or non-planar quads. The authors also 
show a few simple ways to construct quad meshes with planar faces.  

Pottman et al. [31] observed there exists a theoretical constraint if one try to connect planar pieces with 
thicknesses. They pointed out that to join planar pieces with thicknesses these pieces need to be 
beveled. To obtain a good looking surface, these beveled edges must be seamlessly joined. They 
showed that if all the pieces are not tangent to the same cone, it is not possible to obtain seamlessly 
joined pieces.  Wang et al identified an angle constraint to satisfy conical mesh property [32].  

Pottman and Wang published a series of papers on conversion of given shapes to conical meshes and 
developable surfaces. Despite the power of their approach, if the designers want to control the whole 
process, simpler methods that can guarantee the final surface to satisfy Gauss-Bonnet and conical 
property is useful. In this way, designers can directly control final results. Moreover, for small firms 



149

developed an algorithm to for designing developable Bezier surfaces [29] and Chu et al. provided a 
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and students who cannot afford such an reverse engineering approaches, simple design methods can be 
exteremely useful.  

In this paper, we introduce such a method. Conical mesh constraint is important if the pieces are thick 
and beveled. In our case, we work in smaller scale which allows us to use thinner pieces. In addition, 
we do not have to deal with beveling the pieces.  

On the other hand, our method is extendable to larger pieces since we use skinny and long triangles to 
approximate developable surfaces.  For such skinny and long triangles the conical mesh constraint is 
guaranteed to be held in the limit.  

Methodology 
To design twisted developable shapes, we use TopMod3D, [34,35]. The design stage consists of the 
following steps.  

We start with one or more polyhedral shapes with planar faces. The only constraint is that the faces 
must be the same type such as all triangles, all quadrilateral or all pentagons. This requirement 
guarantees that we can connect the faces with handles.   

We then connect any given two faces of initial polyhedral shape with handles. These handles are 
nothing but swept surfaces that are approximated as deformed prisms. The most crucial step is that we 
approximate these handles with huge number of segments using the handle creation tool in TopMod3D 
[36]. We also choose the corners of the two faces in such a way that the resulting handles are twisted in 
space. TopMod handle creation tool provide a set of parameters. The users play the parameters until to 
achieve a desired look. This procedure creates twisted handles that consists of long triangular stripes.  

We then continue the procedure until obtaining a desired topological shape. Each handle creation 
increases the genus of the shape by one. With this procedure one can obtain a very high genus surface 
with twisted handles. TopMod  does not provide tools to apply some desired geometric deformations  to 
surface.  

To make geometric modifications, we export the final shape to Maya [37]. Using a wide variety of 
Maya tools to change geometry, we make some alterations until we obtain a desired shape. Such minor 
modifications in the does not destroy the developable property since final TopMod model consists of 
long skinny triangles.   

We then export and unfold the model using Pepakura [38]. Since handles are twisted, unfolding gives 
only a few numbers of individual pieces, which reduces the difficulty of joining huge number of pieces. 
We then cut the pieces with a laser cutter and join them together simply using a glue gun.  

This procedure allows us without worrying Gauss-Bonnet and Conical constraints; we can obtain a 
developable shape that can be high genus with any number of handles as shown in Figures 4-7.  Since 
the handles are twisted, the resulting shapes provide visual puzzles, which can be perceptively 
challenging and interesting.  

We have tested this approach in a architecture studio class and student group, which consists of Sarah 
Beth Eisinger, Lauren Wiatrek, Catlan Fearon, Ronald Eckels,  has easily created a significant number 
of twisted developable shapes. Based on this experience, we claim that the method is easy to use and 
understand. 
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Figure 5. A genus-1 twisted developable. 

Implementation, Construction and Examples 

Using the method, we have constructed a large number of small scale prototypes using paper as shown 
in Figure 4-6. We are currently in the process of constructing one of them in larger scale using some 
special plastic sheets that provide developable property. Fabrication is important in order to estimate 
process parameters. An optimization of the joint problem is being formulated to determine the surface 
which; should be in the closest proximity to the design surface, which is subjected to developability. 
The predicted shape becomes fundamental information in determining more process parameters for the 
fabrication of these objects. After reviewing various fabrication methods using PVC laminated 
surfaces, called SINTRA, something was very apparent. There is very little information on construction 
methods and material studies for the possibility of large-scale fabrication. 

Conclusion and Future Work 
 
In this paper, we presented a method to design and construct shapes with twisted developable pieces. 
Using our method, interesting shapes can be designed and constructed using sheet metals, plastic or 
paper. We have designed and constructed a large set of prototype shapes that using this method. These 
shapes consist of only a few number pieces that are cut with laser cutter.  
   

 
 

Figure  4. A genus-2 twisted developable 
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Figure 6. A twisted developable table.  
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